Ghostscript Documentation
Release 10.03.1

Artifex

May 02, 2024

10

11

12

13

14

15

16

17

18

19

20

21

22

Introduction

News

Ghostscript Release Dates

Building from Source

Installing

Using

Information for Ghostscript Developers
API

The Core Library

Language Bindings

PostScript Language

Third Party Libraries

Details of Ghostscript Output Devices

High Level Devices

The Interface between Ghostscript and Device Drivers

Unsupported Devices

Sample CMYK 32-bit Device that Supports Post Rendering Processing

Guide to Ghostscript Source Code

Ghostscript C Coding Guidelines

Ghostscript PostScript Coding Guidelines

Ghostscript Enterprise

The GhostPDL Interpreter Framework

ABOUT

11

21

39

45
105
143
169
179
245
269
271
297
321
359
397
405
409
427
433

435

23 Convert PostScript to Encapsulated PostScript Interchange Format
24 PostScript Files Distributed with Ghostscript

25 Fonts and Font Facilities Supplied with Ghostscript

26 Ghostscript Color Management

27 Setting Up a Unix Ipr Filter for Ghostscript

445

447

455

463

489

Ghostscript Documentation, Release 10.03.1

ghostscript

Ghostscript is an interpreter for the PostScript® language and PDF files. It is available under either the GNU GPL
Affero license or licensed for commercial use from Artifex Software, Inc. It has been under active development for
over 30 years and has been ported to several different systems during this time. Ghostscript consists of a PostScript

interpreter layer and a graphics library.

ABOUT

https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/PDF
https://www.gnu.org/licenses/agpl-3.0.html
https://www.gnu.org/licenses/agpl-3.0.html
https://artifex.com/licensing/commercial?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
https://artifex.com/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link

Ghostscript Documentation, Release 10.03.1

2 ABOUT

CHAPTER
ONE

INTRODUCTION

This document is a roadmap to the Ghostscript documentation. After looking through it, if you want to install
Ghostscript and not only use it, we recommend you read How fo install Ghostscript, and How to compile Ghostscript
from source code (which is necessary before installing it on Unix and VMS systems).

1.1 What is Ghostscript?

There are various products in the Ghostscript family; this document describes what they are, and how they are related.

1.1.1 Ghostscript

Ghostscript is an interpreter for PostScript® and Portable Document Format (PDF) files.

Ghostscript consists of a PostScript interpreter layer, and a graphics library. The graphics library is shared with all the
other products in the Ghostscript family, so all of these technologies are sometimes referred to as Ghostscript, rather
than the more correct GhostPDL.

Binaries for Ghostscript and (see below) GhostPDF (included in the Ghostscript binaries) for various systems can
be downloaded from ghostscript.com/download. The source can be found in both the Ghostscript and GhostPDL
downloads from the same site.

1.1.2 GhostPDF

Prior to release 9.55.0 GhostPDF was an interpreter for the PDF page description language built on top of Ghostscript,
and written in the PostScript programming language. From 9.55.0 onwards there is a new GhostPDF executable,
separate from Ghostscript and written in C rather than PostScript.

This new interpreter has also been integrated into Ghostscript itself, in order to preserve the PDF functionality of
that interpreter. For now, the old PostScript-based interpreter remains the default, but the new interpreter is built-in
alongside it.

The intention is that the new interpreter will replace the old one, which will be withdrawn.

It is possible to control which interpreter is used with the NEWPDF command-line switch. When this is false (the
current default) the old PostScript-based interpreter is used, when NEWPDF is true then the new C-based interpreter
is used.

http://www.ghostscript.com/download/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link

Ghostscript Documentation, Release 10.03.1

1.1.3 GhostPDL

Historically, we’ve used GhostPDL as an umbrella term to encompass our entire line of products. We’ve now brought
all these disparate products together into a single package, called, appropriately enough, GhostPDL.

When running on a printer (or server) GhostPDL now automatically detects the type of data being fed to it and pro-
cesses it accordingly. The individual interpreters all plug into a top-level module that handles both automatic language
detection and Printer Job Language (PJL) based configuration.

The exact set of interpreters present in an installation can be tuned by the integrator for their specific product/use cases.

In addition to our existing PDL modules (PS, PDF, PCL, PXL, and XPS) we have now added new modules to handle
a range of common image formats. With these installed, GhostPDL will handle JPEGs (both JFIF and EXIF), PWGs,
TIFFs, PNGs, JBIG2s, and JPEG2000s.

GhostPDL is available both under the GNU Affero GPL license and for commercial licensing from Artifex.

The source code for GhostPDL can be found from ghostscript.com/download.

1.1.4 GhostPCL

GhostPCL is an interpreter for PCL™ and PXL files. This consists of an PCL/PXL interpreter hooked up to the
Ghostscript graphics library.

GhostPCL is available both under the GNU Affero GPL license and for commercial licensing from Artifex.

Binaries for GhostPCL for various systems can be downloaded from ghostscript.com/download. The source can be
found in the GhostPCL/GhostPDL downloads from the same site.

1.1.5 GhostXPS

GhostXPS is an interpreter for XPS (XML Paper Specfication) files. This consists of an XPS interpreter hooked up to
the Ghostscript graphics library.

GhostXPS is available both under the GNU Affero GPL license and for commercial licensing from Artifex.

Binaries for GhostXPS for various systems can be downloaded from ghostscript.com/download. The source can be
found in the GhostXPS/GhostPDL downloads from the same site.

1.1.6 Ghostscript Enterprise

Ghostscript Enterprise is a commercial version of GhostPDL which can also read and process a range of common
office documents, including Word, PowerPoint and Excel. Find out more in the Ghostscript Enterprise section.

1.1.7 URW++ Font Information

We rely on two sets of fonts for our products, both from URW++.

Firstly, there is a PostScript Language Level 2 font set (also required for PDF), in Type 1 font format. These are included
with Ghostscript and GhostPDL, and are distributed under the GNU GPLv2, with an exemption to allowing embedding
in PDF and PostScript files.

Secondly, there is the PCLS5 set, in TrueType format. These are required for GhostPCL and GhostPDL (since the latter
includes PCLS5 support).

4 Chapter 1. Introduction

http://www.gnu.org/licenses/agpl-3.0.htmll
https://artifex.com/licensing/commercial?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
https://artifex.com/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
http://www.ghostscript.com/download/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
http://www.gnu.org/licenses/agpl-3.0.htmll
https://artifex.com/licensing/commercial?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
https://artifex.com/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
http://www.ghostscript.com/download/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
http://www.gnu.org/licenses/agpl-3.0.htmll
https://artifex.com/licensing/commercial?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
https://artifex.com/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
http://www.ghostscript.com/download/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link

Ghostscript Documentation, Release 10.03.1

These PCL fonts are NOT FREE SOFTWARE and are NOT distributed under any GNU GPL/AGPL variant. They are,
instead, distributed under the AFPL license which prohibits commercial use. A copy of this license in included in the
GhostPDL source distribution.

1.2 Document roadmap by theme

1.2.1 What should | read if I'm a new user?
* How to use Ghostscript. This includes both a quickstart introduction to the command line version and more
extensive reference material.
¢ detailed information about specific devices that Ghostscript can use for output.
* more detailed information about how to use Ghostscript under Unix with 1pr as a filter for printing.

» for information about known problems or to report a new one, please visit bugs.ghostscript.com but remember
that free versions of Ghostscript come with with NO WARRANTY and NO SUPPORT.

1.2.2 GPL and commercial Ghostscript

GPL Ghostscript, Artifex Ghostscript and AFPL Ghostscript are different releases.
* additional information about GPL Ghostscript releases that is not relevant to commercial versions.

If you run into any questions, or if you are going to be using Ghostscript extensively, you should at least skim, and
probably eventually read:

* about the fonts distributed with Ghostscript, including how to add or replace fonts.
* adescription of the Ghostscript language, and its differences from the documented PostScript language.

e about the postscript files distributed with Ghostscript (other than fonts).

1.2.3 Before building Ghostscript

If you are going to compile Ghostscript from source, rather than just use an executable you got from somewhere, you
may want to read:

* How to build Ghostscript and install it.

1.2.4 What should I read if I'm not a new user?

If you have already used Ghostscript, when you receive a new release you should begin by reading this file, then:

* News, for incompatible changes and new features in the current release.

1.2. Document roadmap by theme 5

https://en.wikipedia.org/wiki/Aladdin_Free_Public_License
https://bugs.ghostscript.com
https://github.com/ArtifexSoftware/ghostpdl/blob/master/doc/COPYING

Ghostscript Documentation, Release 10.03.1

1.2.5 What if I'm a developer?

If you are going to do any development on or with Ghostscript at all, you should at least look at:
e the roadmap documentation for Ghostscript’s source files and architecture.

If you are going to write a new driver for Ghostscript, you should read:
* the guide to the Ghostscript source code.
* the interface between Ghostscript and device drivers.

If you are considering distributing GPL Ghostscript in conjunction with a commercial product, you should read the
license carefully, and you should also read:

¢ additional clarification of the circumstances under which Ghostscript can be distributed with a commercial prod-
uct.

If you intend to use Ghostscript in the form of a dynamic link library (DLL) under OS/2 or Microsoft Windows or in
the form of shared object under Linux, read:

* documentation on Ghostscript Interpreter API.

If you want to use Ghostscript as part of another program, as a callable PostScript language interpreter, and not as a
DLL or as a self-contained executable application, you should begin by reading:

* the source file imain.h, the documented API for Ghostscript not as a DLL.
or if you are going to use only the Ghostscript graphics library:

* about the structure of the Ghostscript library and its interfaces.

1.2.6 What if I'm writing documentation?

If you are editing or adding to Ghostscript’s existing documentation you should contact us on our Discord channel or
the gs-devel mailing list for guidance, links to those are on: www.ghostscript.com.

1.3 Presence on the World Wide Web

1.3.1 Ghostscript’s home page

Ghostscript has a home page on the World Wide Web with helpful information such as the FAQ (Frequently Asked
Questions):

www.ghostscript.com

1.3.2 Other material on the WWW

Much other material about Ghostscript is available on the World Wide Web, both as web pages and as archived Usenet
and mailing list discussions. Use the well-known search engines to find such material.

6 Chapter 1. Introduction

https://github.com/ArtifexSoftware/ghostpdl/blob/master/doc/COPYING
http://www.ghostscript.com/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
http://www.ghostscript.com/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
https://discord.gg/TSpYGBW4eq

Ghostscript Documentation, Release 10.03.1

1.3. Presence on the World Wide Web 7

Ghostscript Documentation, Release 10.03.1

8 Chapter 1. Introduction

CHAPTER
TWO

NEWS

Ghostscript Documentation, Release 10.03.1

10 Chapter 2. News

CHAPTER
THREE

3.1 Version 10

Version 10.01.2 (2023-06-21)
Version 10.01.1 (2023-03-27)
Version 10.01.0 (2023-03-22)
Version 10.00.0 (2022-09-21)

3.2 Version 9

Version 9.56.1 (2022-04-04)
Version 9.56.0 (2022-03-29)
Version 9.55.0 (2021-09-27)
Version 9.54.0 (2021-03-19)
Version 9.53.3 (2020-10-01)
Version 9.52 (2020-03-19)
Version 9.50 (2019-10-15)
Version 9.27 (2019-04-03)
Version 9.26 (2018-11-20)
Version 9.25 (2018-09-13)
Version 9.24 (2018-09-03)
Version 9.23 (2018-03-21)
Version 9.22 (2017-10-04)
Version 9.21 (2017-03-16)
Version 9.20 (2016-09-26)
Version 9.19 (2016-03-23)
Version 9.18 (2015-09-23)
Version 9.16 (2015-03-30)
Version 9.15 (2014-09-22)

GHOSTSCRIPT RELEASE DATES

11

Ghostscript Documentation, Release 10.03.1

Version 9.14 (2014-03-26)
Version 9.10 (2013-08-27)
Version 9.09 (2013-08-21)
Version 9.07 (2013-02-14)
Version 9.06 (2012-07-31)
Version 9.05 (2012-02-08)
Version 9.04 (2011-08-05)
Version 9.02 (2011-03-30)
Version 9.01 (2011-02-07)
Version 9.00 (2010-09-14)

3.3 Version 8

Version 8.71 (2010-02-10)
Version 8.70 (2009-07-31)
Version 8.64 (2009-02-03)
Version 8.63 (2008-08-01)
Version 8.62 (2008-02-29)
Version 8.61 (2007-11-21)
Version 8.60 (2007-08-01)
Version 8.57 (2007-05-11)
Version 8.56 (2007-03-14)
Version 8.54 (2006-05-17)
Version 8.53 (2005-10-20)
Version 8.52 (2005-10-07)
Version 8.51 (2005-04-18)
Version 8.50 (2004-12-10)
Version 8.33 (2004-11-20)
Version 8.32 (2004-10-26)
Version 8.31 (2004-08-28)
Version 8.30 (2004-05-29)
Version 8.12 (2003-12-08)
Version 8.11 (2003-08-16)
Version 8.10 (2003-05-21)
Version 8.00 (2002-11-21)

12

Chapter 3. Ghostscript Release Dates

Ghostscript Documentation, Release 10.03.1

3.4 Version7

Version 7.33 (2002-11-18)
Version 7.32 (2002-11-02)
Version 7.31 (2002-10-17)
Version 7.30 (2002-09-07)
Version 7.22 (2002-08-06)
Version 7.21 (2002-07-08)
Version 7.20 (2002-04-03)
Version 7.03 (2001-10-20)
Version 7.02 (2001-09-22)
Version 7.00 (2001-04-08)

3.5 Version 6

Version 6.64 (2001-04-07)
Version 6.63 (2001-03-31)
Version 6.62 (2001-03-19)
Version 6.61 (2001-02-21)
Version 6.60 (2000-12-31)
Version 6.30 (2000-10-03)
Version 6.23 (2000-08-07)
Version 6.22 (2000-07-05)
Version 6.21 (2000-04-28)
Version 6.20 (2000-04-06)
Version 6.01 (2000-03-17)
Version 6.0 (2000-02-03)

3.6 Version 5

Version 5.99 (beta) (1999-12-18)
Version 5.98 (beta) (1999-12-01)
Version 5.97 (beta) (1999-11-22)
Version 5.96 (beta) (1999-11-12)
Version 5.95 (beta) (1999-11-01)
Version 5.94 (beta) (1999-09-30)
Version 5.93 (beta) (1999-09-11)

3.4. Version7

13

Ghostscript Documentation, Release 10.03.1

Version 5.92 (beta) (1999-09-02)
Version 5.91 (beta) (1999-08-30)
Version 5.90 (beta) (1999-08-20)
Version 5.88 (tester) (1999-08-03)
Version 5.87 (tester) (1999-06-29)
Version 5.86 (tester) (1999-06-14)
Version 5.85 (tester) (1999-05-29)
Version 5.84 (tester) (1999-05-19)
Version 5.83 (tester) (1999-05-13)
Version 5.82 (tester) (1999-04-24)
Version 5.81 (tester) (1999-04-14)
Version 5.80 (tester) (1999-04-06)
Version 5.73 (tester) (1999-03-19)
Version 5.72 (tester) (1999-03-17)
Version 5.71 (tester) (1999-03-03)
Version 5.70 (internal) (1999-02-20)
Version 5.69 (internal) (1999-02-04)
Version 5.68 (internal) (1999-01-29)
Version 5.67 (internal) (1999-01-08)
Version 5.66 (internal) (1998-11-25)
Version 5.65 (internal) (1998-11-13)
Version 5.64 (internal) (1998-11-05)
Version 5.63 (internal) (1998-11-04)
Version 5.62 (internal) (1998-10-31)
Version 5.61 (internal) (1998-10-28)
Version 5.60 (internal) (1998-10-18)
Version 5.50 (1998-09-16)

Version 5.40 (beta) (1998-09-10)
Version 5.39 (beta) (1998-09-08)
Version 5.38 (beta) (1998-09-03)
Version 5.37 (beta) (1998-08-31)
Version 5.36 (beta) (1998-08-25)
Version 5.35 (beta) (1998-08-18)
Version 5.34 (beta) (1998-08-16)
Version 5.33 (beta) (1998-08-14)
Version 5.32 (beta) (1998-08-13)

14

Chapter 3. Ghostscript Release Dates

Ghostscript Documentation, Release 10.03.1

Version 5.31 (limited) (1998-08-11)
Version 5.30 (limited) (1998-08-10)
Version 5.28 (limited) (1998-08-03)
Version 5.27 (limited) (1998-07-18)
Version 5.26 (limited) (1998-07-07)
Version 5.25 (limited) (1998-07-01)
Version 5.24 (limited) (1998-06-17)
Version 5.23 (limited) (1998-05-14)
Version 5.22 (limited) (1998-02-19)
Version 5.21 (limited) (1998-01-19)
Version 5.20 (limited) (1998-01-08)
Version 5.10 (1997-11-23)

Version 5.07 (limited) (1997-10-31)
Version 5.06 (limited) (1997-10-07)
Version 5.05 (limited) (1997-09-24)
Version 5.04 (limited) (1997-09-21)
Version 5.03 (1997-08-08)

Version 5.02 (1997-07-28)

Version 5.01 (1997-06-22)

Version 5.0 (1997-06-06)

3.7 Version 4

Version 4.81 (1997-06-01)

Version 4.80 (limited) (1997-05-28)
Version 4.74 (limited) (1997-05-05)
Version 4.73 (limited) (1997-04-19)
Version 4.72 (limited) (1997-04-14)
Version 4.71 (limited) (1997-03-31)
Version 4.70 (limited) (1997-03-26)
Version 4.61 (limited) (1997-03-13)
Version 4.60 (limited) (1997-03-02)
Version 4.51 (limited) (1997-02-09)
Version 4.50 (limited) (1997-01-31)
Version 4.41 (private) (1997-01-21)
Version 4.40 (private) (1997-01-13)

3.7. Version 4

15

Ghostscript Documentation, Release 10.03.1

Version 4.39 (limited) (1997-01-01)
Version 4.38 (limited) (1996-12-20)
Version 4.37 (limited) (1996-12-10)
Version 4.36 (limited) (1996-12-03)
Version 4.35 (limited) (1996-11-24)
Version 4.34 (limited) (1996-11-18)
Version 4.33 (limited) (1996-11-06)
Version 4.32 (limited) (1996-11-01)
Version 4.31 (limited) (1996-10-27)
Version 4.30 (limited) (1996-10-23)
Version 4.21 (limited) (1996-10-17)
Version 4.20 (limited) (1996-10-13)
Version 4.10 (limited) (1996-09-25)
Version 4.03 (1996-09-23)

Version 4.02 (1996-09-19)

Version 4.01 (1996-07-10)

Version 4.0 (1996-06-28)

3.8 Version 3

Version 3.70 patch 1 (1996-06-24)

Version 3.70 (limited) (1996-06-23)

Version 3.69 (limited) (1996-06-14)

Version 3.68 patch 4 (1996-05-23)

Version 3.68 patch 3 (1996-05-17)

Version 3.68 patch 2 (1996-05-13)

Version 3.68 patch 1 (1996-05-10)

Version 3.68 (limited) (1996-05-09)

Version 3.67 (limited) (1996-04-12)

Version 3.66 (limited) (1996-04-08)

Version 3.65 (limited) (1996-03-09)

Version 3.64 (limited, incremental) (1996-01-27)
Version 3.63 (limited, incremental) (1996-01-14)
Version 3.62 (limited, incremental) (1995-12-26)
Version 3.61 (limited) (1995-12-10)

Version 3.60 (limited) (1995-11-20)

16 Chapter 3. Ghostscript Release Dates

Ghostscript Documentation, Release 10.03.1

Version 3.53 (1996-01-10)*"
Version 3.52 (limited) (1995-10-06)
Version 3.51 (1995-09-27)

Version 3.50 (limited) (1995-09-24)
Version 3.49 (limited) (1995-09-20)
Version 3.48 (limited) (1995-09-17)
Version 3.47 (limited) (1995-09-14)
Version 3.46 (limited) (1995-09-04)
Version 3.45 (limited) (1995-08-27)
Version 3.44 (limited) (1995-08-21)
Version 3.43 (limited) (1995-08-10)
Version 3.42 (limited) (1995-08-02)
Version 3.41 (limited) (1995-07-27)
Version 3.40 (limited) (1995-06-28)
Version 3.39 (limited) (1995-06-24)
Version 3.38 (limited) (1995-06-18)
Version 3.37 (limited) (1995-05-11)
Version 3.36 (limited) (1995-05-04)
Version 3.35 (internal) (1995-05-02)
Version 3.34 (internal) (1995-04-18)
Version 3.33 (1995-04-13)

Version 3.32 (1995-04-07)

Version 3.31 (1995-04-02)

Version 3.30 (beta) (1995-03-21)
Version 3.29 (internal) (1995-03-08)
Version 3.28 (beta) (1995-02-13)
Version 3.27 (beta)(withdrawn) (1995-02-08)
Version 3.26 (beta) (1995-02-01)
Version 3.25 (beta) (1995-01-24)
Version 3.24 (beta) (1995-01-17)
Version 3.23 (beta) (1995-01-05)
Version 3.22 (beta) (1994-11-30)
Version 3.21 (beta) (1994-11-17)
Version 3.20 (beta) (1994-10-31)
Version 3.13 (private) (1994-10-03)

0 This is an anomalous, out-of-sequence release requested by a commercial licensee. It consists of 3.52 plus the following retrofits from 3.60
through 3.63

3.8. Version 3 17

Ghostscript Documentation, Release 10.03.1

Version 3.12 (1994-09-29)
Version 3.1.1 (1994-09-25)
Version 3.1 (1994-09-20)

Version 3.0.3 (1994-09-16)
Version 3.02 (1994-08-30)
Version 3.01 (1994-08-14)
Version 3.0 (1994-08-01)

3.9 Version 2

Version 2.9.10-beta (1994-07-28)

Version 2.9.9-beta (1994-06-23)

Version 2.9.8 (1994-06-20)

Version 2.9.7-beta (1994-06-05)

Version 2.9.6-beta (not distributed to the public) (1994-05-23)
Version 2.9.5-beta (1994-04-11)

Version 2.9.4-beta (1994-02-19)

Version 2.9.3-beta (1994-01-19)

Version 2.9.2-beta (1994-01-02)

Version 2.9.1-beta (1993-12-07)

Version 2.9-beta (1993-12-06)

Version 2.8-beta (1993-11-10)

Version 2.7.2-beta (1993-10-11)

Version 2.7.1-beta (not distributed to the public) (1993-10-04)
Version 2.7-beta (not distributed to the public) (1993-09-20)
Version 2.6.1 (1993-05-28)

Version 2.6 (1993-05-09)

Version 2.5.2 (1992-09-20)

Version 2.5.1 (1992-09-11)

Version 2.5 (1992-08-18)

Version 2.4.2 (1992-05-08)

Version 2.4.1 (1992-04-21)

Version 2.4 (1992-03-25)

Version 2.3 (1991-08-28)

Version 2.2 (1991-06-01)

Version 2.1.1 (1991-01-15)

18

Chapter 3. Ghostscript Release Dates

Ghostscript Documentation, Release 10.03.1

Version 2.1 (1990-12-31)
Version 2.0 (1990-09-12)

3.10 Version 1

Version 1.3 (1989-06-20)
Version 1.2 (1989-02-22)
Version 1.1 (1989-02-12)
Version 1.0 (1988-08-11)

3.10. Version 1

19

https://discord.gg/TSpYGBW4eq

Ghostscript Documentation, Release 10.03.1

20 Chapter 3. Ghostscript Release Dates

CHAPTER
FOUR

BUILDING FROM SOURCE

4.1 General overview

This document describes how to build a Ghostscript executable from source code. There are four major steps to building
Ghostscript:

1. Acquire the compressed archive files of source code for Ghostscript.

2. Unpack the archive files into the Ghostscript directory.

3. Configure the build to match your system and desired configuration options.
4. Invoke “make” to build the software.

The remainder of this document describes each of these steps in detail. Note that some of this process is platform-
dependent. After building Ghostscript you must then install it; for that, see the installation instructions.

Long term users of Ghostscript may notice the instructions for a number of older systems have been removed from this
document. There is no value judgment implied in this, but recognition that the build system has changed considerably
in recent years, and several of these legacy systems are no longer easily available to the development team. We will
always consider contributions to continue support for legacy systems.

4.2 Built libraries

The following Ghostscript libraries will be built for these respective platforms:

Platform Ghostscript library files
Windows 32-bit gpd1d1132.d11 gsd1132.d11
Windows 64-bit gpdldl164.d11 gsdl1l64.d11
MacOS libgpdl.dylib libgs.dylib
Linux / OpenBSD | libgpdl.so libgs.so

Note: The actual filenames on MacOS will be appended with the version of Ghostscript with associated symlinks.

21

Ghostscript Documentation, Release 10.03.1

4.3 How to acquire the source code

Building Ghostscript requires the Ghostscript source code itself, and in some cases the source code for the third-party
libraries that Ghostscript uses.

Official releases can be found under the AGPL license at:
https://ghostscript.com/download/

Ghostscript source code is packaged in gzip-compressed tar archives (*.tar.gz), e.g.:
ghostscript-#.##.tar.gz

(“#.##” are version numbers.)

Software to decompress and extract both formats is available for almost every platform for which Ghostscript is available
— including Unix, Linux, MS Windows, and so on — but it’s up to you to locate that software. See the section on
unpacking the source code.

Note: Unlike earlier versions, Ghostscript packages are now one, complete archive, including font files and third party
library dependency sources.

4.4 How to acquire the development source code

The Ghostscript team use git for version control.

If you require a snapshot of the development code, the easiest way to get it is to visit the web interface to our git
repository: ghostpdl.git and click the “snapshot” link next to the specific commit in which you are interested. After a
short delay, that will download a complete source tree for the given commit in a gzipped tar archive.

If you require access to several commits, or wish to regularly access the latest development code, you are better to clone
the entire git repository, using:

git clone git://git.ghostscript.com/ghostpdl.git

which will create a local, read-only repository.

Both the “snapshot” and the git clone methods download the Ghostscript sources as part of the GhostPDL source tree,
which includes the PCL/PXL and XPS interpreters also built on top of the Ghostscript graphics library.

The configure script discussed later in the document is created as part of the Ghostscript release process, and as the
source tree retrieved from git is “pre-release” code, it does not include a pre-made configure script. See autogen.sh.

4.5 How to unpack the source code

Unfortunately, there are no generally accepted standards for how to package source code into archives, so the instructions
for unpacking Ghostscript are longer than they should be. We begin with a brief explanation of how to extract the two
kinds of archive files.

22 Chapter 4. Building from Source

https://ghostscript.com/download/
http://git-scm.com/
http://git.ghostscript.com/?p=ghostpdl.git;a=summary

Ghostscript Documentation, Release 10.03.1

4.5.1 How to unpack compressed tar files generally

Tar (. tar) files are the de facto standard for archiving files on Unix (every Unix-like system has the tar program),
and programs to extract their contents are also widely available for MS Windows, and most other environments. To
economize on space and downloading time, Ghostscript’s tar files are compressed with GNU gzip, which adds the
suffix ““. gz” to the file name, giving “. tar.gz”.

To unpack a compressed tar file MyArchive.tar.gz you must both decompress it and extract the contents. You can
do this in two steps, one to decompress the file and another to unpack it:

gzip -d MyArchive.tar.gz
tar -xf MyArchive.tar

or in a pipeline:

gzip -d -c MyArchive.tar.gz | tar -xf -

or, if you have a program like GNU tar that can handle compressed tar files, with a single command:

tar -zxf MyArchive.tar.gz

The tar program automatically preserves directory structure in extracting files. The Ghostscript source archive puts
all files under a directory ghostscript-#.##, so using tar to unpack a compressed archive should always properly
create that directory, which we will call the “ghostscript directory”.

Some other programs — under MS Windows, for instance — can also unpack compressed tar files, but they may not
automatically preserve directory structure nor even extract files into the current directory. If you use one of these, you
must:

* set the program’s options to “Use folder names” (or the equivalent).
, and:
* check that it is extracting files into the right place.

As both tar and gzip formats are now well supported by several applications on MS Windows, we only supply the
tar.gz archive.

WinZip, 7-zip & Info-ZIP are respectively a commercial and two free applications which can decompress and extract
.tar.gz archives on MS Windows.

4.5.2 How to unpack Ghostscript itself

At this point you have acquired the source code and are ready to unpack it according to the preceding guidelines.

2-step:

gzip -d ghostscript-#.##.tar.gz
tar -xf ghostscript-#.##.tar

Pipe:

gzip -d -c ghostscript-#.##.tar.gz | tar -xf -

GNU tar:

tar -zxf ghostscript-#.##.tar.gz

All the Ghostscript source files are now in subdirectories of the ghostscript-#.## directory.

4.5. How to unpack the source code 23

http://www.winzip.com/
http://www.7-zip.org/
http://www.info-zip.org/

Ghostscript Documentation, Release 10.03.1

4.5.3 Ghostscript Core Source subdirectories

Subdirectory Contents

arch/ Pre-defined architecture header files

base/ Graphics library C source code and makefiles

contrib/ Community contributed/supported output devices

devices/ The output devices supported by the Ghostscript
team

psi/ PS interpreter C source code and makefiles

Resource/ Postscript initialization, resource and font files

lib/ PostScript utilities and scripts used with
Ghostscript

doc/ Documentation

man/ Unix man pages

examples/ Sample PostScript files

iccprofiles/ Default set of ICC profiles

windows/ Visual Studio for Windows specific project and
solution files

toolbin/ Useful (non-Postscript) tools, mostly for devel-
oper use only

Optionally, if you downloaded the GhostPDL archive, you may also have:

4.5.4 Additional GhostPDL source subdirectories

Subdirectory Contents

pcl/ PCL/PXL interpreter C source code, makefiles,
fonts etc.

xps/ XPS interpreter C source code and makefiles

Supporting third party libraries will also be in their own sub-directories (e.g. jpeg, freetype and so on).

4.6 How to check for post-release bug fixes

Bug information and fixes are tracked on Ghostscript Bugzilla.

4.7 How to prepare the makefiles

The Ghostscript makefiles are very large and complex in order to deal with the diverse requirements of all the different
systems where they may be used.

Ghostscript has an automatic configuration script. If you’re on unix or a system that supports unix shell scripts, this is
the easiest option to use. Simply type:

./configure

24 Chapter 4. Building from Source

http://bugs.ghostscript.com

Ghostscript Documentation, Release 10.03.1

from the top level of the Ghostscript source directory. It should configure itself based on what’s available on your
system, warn you of any missing dependencies, and generate a Makefile. At this point you can skip to the section
invoking make below. Also, many common configuration options (like install location) can be set through options to
the configure script.

Type ./configure --help for a complete listing. Note that the configuration option is only available with the unix
. tar distributions of the source.

Note: If you're building Ghostscript from development source out of a repository instead of from a released
source package, you should run . /autogen. sh instead of ./configure. This script takes all the same options that
configure does.

If your system doesn’t support the configure script or you don’t wish to use it, you can use the traditional Ghostscript
makefile system, editing the options by hand to match your system as described below. Fortunately, the only
makefiles you're likely to want to change are relatively small ones containing platform-specific information.

4.7.1 Platform-specific makefiles

The table below lists a number of platform independent makefiles in each of the core Ghostscript source directories.

Makefile Used for

Makefile.in Template makefile for the autoconf build.

psi/msvc.mak MS Windows with Microsoft Visual Studio 2003 and
later.

base/unix-gcc.mak Unix with gcc.

base/unixansi.mak Unix with ANSI C compilers other than gcc.

Since these files can change from one Ghostscript version to another, sometimes substantially, and since they all include
documentation for the various options, here we don’t duplicate most of that documentation: we recommend strongly
that you review the entire makefile specific for your operating system and compiler before building Ghostscript.

4.7.2 Changes for your environment
Assuming you have opted not to use the configure script or the default Microsoft Visual Studio bulid, you must edit
the platform-specific makefile to change any of these:

¢ The name of the makefile itself (MAKEFILE macro).

* The locations to install Ghostscript files (prefix etc.).

* The default search paths for the initialization and font files (GS_LIB_DEFAULT macro).

* The debugging options (DEBUG and TDEBUG macros).

* Which optional features to include (FEATURE_DEVS).

e Which device drivers to include (DEVICE_DEVS and DEVICE_DEVS{1--203} macros).

* Default resolution parameters for some printer drivers (devs.mak or contrib.mak, whichever defines the
driver).

In general these will be set to commonly sensible values already, but may not be ideal for your specific case.

The platform-specific makefiles include comments describing all these except the DEVICE_DEVS options. These are
described in devs.mak and contrib.mak, even though the file that must be edited to select them is the platform-
specific makefile.

4.7. How to prepare the makefiles 25

Ghostscript Documentation, Release 10.03.1

Some platform-specific options are described in the sections for individual platforms. See the “Options” section near
the beginning of the relevant makefile for more information.

4.7.3 Selecting features and devices

You may build Ghostscript with any of a variety of features and with any subset of the available device drivers. The
complete list of features is in a comment at the beginning of gs.mak, and the complete list of drivers in comments at
the beginning of devs.mak and contrib.mak. To find what devices a platform-specific makefile selects to include
in the executable, look in it for all lines of the form:

FEATURE_DEVS={1list of features}
DEVICE_DEVS*={list of devices}

For example, if the makefile has:

FEATURE_DEVS=$(PSD)level2.dev

indicating that only the PostScript Level 2 facilities should be included, you might make it:

FEATURE_DEVS=$(PSD)1level2.dev $(PSD)pdf.dev

to add the ability to interpret PDF files. (In fact, FEATURE_DEVS in the current Unix makefiles already includes
$(PSD)pdf.dev.).

It is extremely important that FEATURE_DEVS is set correctly. Currently, the default builds will include a complete
feature set, and as such most of those building Ghostscript will have no need to change it. Only those working in
heavily resource constrained environment will want to experiment, and it is vital that the implications of such changes
be understood, otherwise Ghostscript may behave in unexpected or apparently incorrect ways, or may even fail to build.

The Unix makefile also defines:

DEVICE_DEVS=$(DD)x11.dev

indicating that the X Windows driver should be included, but since platform-specific makefiles as distributed nor-
mally include many of the possible features and drivers, you will probably rather remove from the makefile the features
and drivers you don’t want. It does no harm to include unneeded features and devices, but the resulting executable will
be larger than needed.

You may edit the FEATURE_DEVS line to select or omit any of the features listed near the beginning of gs.mak, and the
DEVICE_DEVS* lines to select or omit any of the device drivers listed near the beginning of devs.mak and contrib.
mak. GS_DEV_DEFAULT is a string containing whitespace separate device names, and give the devices Ghostscript
should attempt to use (and the order) if no device is specified on the command line; see the usage documentation for
how to select an output device at run time using the -sDEVICE= switch. If you can’t fit all the devices on a single line,
you may add lines defining:

DEVICE_DEVS1=$(DD){devll}.dev ... $(DD){devin}.dev
DEVICE_DEVS2=$(DD){dev21}.dev ... $(DD){dev2n}.dev

etc., up to DEVICE_DEVS15. Don’t use continuation lines — on some platforms they don’t work.

Note: If you want to include a driver named xxx, you must put $ (DD)xxx.dev in DEVICE_DEVS¥*. Similarly, if you
want to include a feature related to the PostScript or PDF language interpreters (PostScript level 1 .. 3, or other language
features such as the ability to read EPSF files or TrueType font files), you must represent it as $ (PSD) xxx . dev.

26 Chapter 4. Building from Source

Ghostscript Documentation, Release 10.03.1

Precompiled run-time data

Ghostscript normally reads a number of external data files at run time: initialization files containing PostScript code,
fonts, and other resources such as halftones. By changing options in the top-level makefile for the platform, you can
cause some of these files to be compiled into the executable: this simplifies installation, improves security, may reduce
memory requirements, and may be essential if you are planning on putting Ghostscript into ROM. Compiling these
files into the executable also means the executable is (largely) self-contained, meaning initialization files, font files,
resource files and ICC profile files are certain to be available and accessible. In general, Ghostscript should initialize
more quickly, and files (especially PDF) files making heavy use of the built-in fonts will interpret more quickly.

For those distributing Ghostscript binaries, compiling those files into the executable has another implication, any site-
specific customizations (such as font and CIDFont substitutions) are slightly more complex to implement - see: How
Ghostscript finds files for how to influence where Ghostscript searches for files. Furthermore, if the files Ghostscript
uses are also required to be accessible by applications other than Ghostscript (the mostly case for this would be font files
and ICC profile files), having those files compiled into Ghostscript maybe suboptimal, essentially require two copies
of the file data to be distributed (one set built into Ghostscript, and the other as “normal” files accessible outside of
Ghostscript.

Compiling the initialization files (Resource/Init/gs_init.ps, etc.) into the executable is the default. To disable
this, change the 1 to a 0 in the line:

COMPILE_INITS=1

Or, if you use the configure based Unix-style build, you can disable COMPILE_INITS by adding the option
--disable-compile-inits to the invocation of configure

Files are now compiled into the executable as a %rom¥% file system that can be searched, opened, etc. as with the normal
(%os%) file system. The data is (mostly) compressed. Several of the initialisation files (those in Resource/Init) are
also converted to binary Postscript encoding, and “merged” into a single monolithic file - this is done for both size and
speed optimization. Files that are often customized for individual installations (such as Fontmap and cidfmap) are not
merged into the single file and thus installation specific versions can be used.

The set of files built into the %rom¥% file system is specified in the psi/psromfs.mak file. By default the set of files
built into the rom file system comprises all the resource files Ghostscript requires to run successfully (all the files under
Resource directory, and those under the iccprofiles directory). Refer to the file base/mkromfs . c for a description
of the parameters that control source and destination pathnames, file enumeration exclusion, compression, etc.

Fonts normally are compiled into the executable using mkromfs (above) from the Resource/Font/ directory.

Similarly, Halftone resources can be compiled into the executable using mkromfs, but also threshold-array halftones can
be compiled into the executable. See the “Compiled halftone” section of int.mak for a sample makefile fragment,
genht . c for the syntax of halftone data files, and 1ib/ht_ccsto.ps for a sample data file. Note that even though the
data files use PostScript syntax, compiled halftones do not require the PostScript interpreter and may be used with the
graphics library alone.

4.7.4 Setting up “makefile”

After going through the steps just described to unpack the sources, configure the build and make any desired changes
to the makefiles. As the final step in preparing to build Ghostscript you must usually associate the name “makefile”
with the correct makefile for your environment so the make command can find it. See the section on your particular
platform for how to do that if necessary.

On unix systems, ./configure (or if checked out of git, . /autogen. sh) should create a Makefile which works in
most scenarios. Manual tampering and editing should rarely be needed nor recommended.

4.7. How to prepare the makefiles 27

Ghostscript Documentation, Release 10.03.1

4.7.5 Invoking “make”

make

make

make

make

make

make

make

make

make

make

make

Builds Ghostscript without debugging options.

debug

Builds Ghostscript with debugging options and additional internal error checks. The program will be somewhat
larger and slower, but it will behave no differently unless you actually turn on debugging options at execution
time with the -DDEBUG or -Z command line switches described in the usage documentation.

P9
On Unix platforms, builds with the -pg compiler switch, creating an executable for time profiling.

install
After building, installs the Ghostscript executables, support files, and documentation, but does not install fonts.
See the installation documentation.

(debug)clean
Deletes all the files created by the build process (relocatables, executables, and miscellaneous temporary files).
If you’ve built an executable and want to save it, move it first to another place, because “make clean” deletes it.

so
On some platforms (Linux, *BSD, Darwin/Mac OS X, SunOS), it is possible to build Ghostscript as a shared
object library. There is a corresponding make soclean for cleaning up.

sanitize

Builds Ghostscript with AddressSanitizer. Output is placed in . /sanbin.

libgs

Builds static library for Ghostscript.

libgpcl6

Builds static library for GhostPCL. Requires the full ghostpdl source release.

libgxps

Builds static library for GhostXPS. Requires the full ghostpdl source release.

libgpdl
Builds static library for GhostPDL. Requires the full ghostpdl source release.

Note:

On some platforms aspects of these simple instructions don’t quite work in one way or another. Read the section
on your specific platform.

If you are attempting to build a statically linked executable, you will probably need to add libraries to the linker
options (libraries that are normally pulled-in automatically by the dynamic linker). These can be added at the
make command line using the EXTRALIBS= option. Unfortunately, the set of libraries that may be required varies
greatly depending on platform and configuration, so it is not practical to offer a list here.

28

Chapter 4. Building from Source

http://git.ghostscript.com/?p=ghostpdl.git;a=summary
http://git.ghostscript.com/?p=ghostpdl.git;a=summary
http://git.ghostscript.com/?p=ghostpdl.git;a=summary

Ghostscript Documentation, Release 10.03.1

4.7.6 Cross-compiling

Cross-compiling is not fully supported by the configure script (such support is a work-in-progress).

You can either use base/unixansi.mak or unix-gcc.mak as the basis for a cross-compile makefile, or use config-
ure to create a basic Makefile as the basis. And modify to suit.

You can set the compiler to your cross-compiler for configure by doing:

./configure CC=<cross-compiler executable>

and configure will then run its checks (as best it can) with the cross-compiler.

If you do so, you should also give configure the option to set the target architecture endianness: --enable-big-endian
or --enable-little-endian.

It would also be wise to review the settings shown in the output of ./configure --help for any that would be
applicable to your target.

The Ghostscript build system uses several interim executables, built and run on the host, as such, even when cross-
compiling, a host native compiler is also required. You must edit your makefile to ensure that is available. Find the
line that starts:

CCAUX=

and set that to your host compiler.

If you did not use configure or did not set the CC variable for configure, you must also set the:
CC=

to your cross-compiler.

The Ghostscript build system uses a utility called genarch (see base/genarch. c for details) to interrogate the envi-
ronment and generate a header file describing the architecture for which Ghostscript is being built. As this is run on
the host it will generate header for the host architecture rather than that of the target.

For cross compiling, you must create (or modify) a header file (arch.h) which accurately describes the target
architecture. Then you must edit your makefile by finding the line:

TARGET_ARCH_FILE=

and set it to the path to, and file name of your custom arch.h file. With that setting, genarch will still be run, but
rather than interrogate the current environment, it will copy the contents of your custom arch.h to the build.

4.8 How to build Ghostscript from source (PC version)

All Ghostscript builds in PC (DOS and MS Windows) environments are 32- or 64-bit: 16-bit builds are not supported.
The relevant makefiles are:

Makefile Construction tools For environment
msvc.mak Microsoft Visual Studio .NET 2003 (or later) | MS Windows 32/64-bit
Makefile.in Cygwin/gcc Cygwin (Use Unix configure)

Ghostscript requires at least MS Windows 95 (although we no longer actively test nor support Win95, we have not
deliberately done anything to break compatibility with it). We recommend at least MS Windows NT 4.0.

4.8. How to build Ghostscript from source (PC version) 29

Ghostscript Documentation, Release 10.03.1

For building, Ghostscript requires at least Visual Studio .NET 2003, and we recommend at least Visual Studio 2019.
It can probably be made to work with earlier versions, though at least VS2005 will be required for 64 bit Windows
support.

Note: The make program supplied with Visual Studio (and earlier Visual C++ versions) is actually called nmake. We
refer to this program generically as make everywhere else in this document.

You must have cmd. exe in your path to build Ghostscript (using the Visual Studio command prompt is ideal). After
making any changes required to choose features and devices to build into the executable, you can then invoke make to
build the executable.

4.8.1 Microsoft Visual Studio

Using Microsoft Visual Studio

To build the required DLLs, load /windows/ghostpdl.sln into Visual Studio, and select the required architecture
from the drop down - then right click on ‘ghostpdl’ in the solution explorer and choose “Build”.

Further details

The Ghostscript source distribution ships with project and solution files for Visual Studio 2015 and later. These
can be found in the windows directory. The project(s) are nmake projects which means that rather than Visual
Studio controlling the build directly, it delegates the build process to the nmake.

Beyond lacking support for parallel builds (nmake cannot support parallel builds), there should be little visible differ-
ence between a conventional VS project and an nmake project to the user of the VS graphical interface. The only
exception to that is if you have to make changes to build options beyond those available in the defined build configura-
tions. In that case, you need to find the Nmake tab in the project Property Pages and modify the appropriate entry:
Build Command Line, Rebuild All Command Line and/or Clean Command Line.

As mentioned above, nmake does not support parallel builds. If you have downloaded and are building the GhostPDL
source archive (which contains Ghostscript, GhostPCL, GhostXPS, and GhostPDL “products”), the GhostPDL. s1n
contains individual projects for each product but, as a result of the limitations of nmake the products cannot be built in
parallel, because nmake 's lack of parallel build awareness means it cannot manage the dependencies shared between
the products, and may fail as multiple builds attempt to access the same dependencies.

To build all the products in one action, use the A11 “pseudo-project”. The A1l project uses a single nmake invocation
to build all the supported products.

Note: Changing the Output property in the Nmake properties will not change the name of the executable - to do that
requires editing of the psi/msvc.mak makefile, or you can add: GS=myname . exe to the nmake command line.

30 Chapter 4. Building from Source

Ghostscript Documentation, Release 10.03.1

Using the command line

Ghostscript can be made using the Windows command prompt or one of the various command line shells made for
Windows, as long as the command line syntax is compatible with the Windows CMD. exe. The Visual Studio command
prompt is ideal.

In order for the makefiles to work properly, two items may have to be changed. An attempt is made to select the correct
version of Microsoft Visual C++ based on the version of nmake. If this doesn’t work it will default to version 6.x. If the
auto-detection does not work, and you are not using version 6.x then before building, in psi\msvc.mak find the line
#MSVC_VERSION=6 and change it to MSVC_VERSION=4, MSVC_VERSION=5, MSVC_VERSION=7 or MSVC_VERSION=8
and so on.

In some cases the location of the Microsoft Developer Studio, needs to be changed. The location of Microsoft Developer
Studio is defined by the value of DEVSTUDIO. There are several different definitions of DEVSTUDIO in psi\msvc.mak.
There is one for each of the currently supported versions of Microsoft Visual C++ (4, 5, 6, 7, 7.1 and 8).

The normal installation process for Microsoft Visual C++ includes setting the location of the Microsoft Visual C++
executables (cl.exe, link.exe, nmake. exe, rc.exe) in your PATH definition and the LIB and INCLUDE environment
variables are set to point to the Microsoft Visual C++ directories. If this is true then the value for DEVSTUDIO can be
changed to empty, i.e. DEVSTUDIO=

If PATH, LIB, and INCLUDE are not correctly set then the value for DEVSTUDIO needs to be defined. For example,
for version 6.0, the default definition for the location for the Microsoft Developer Studio is: DEVSTUDIO=C: \Program
Files\Microsoft Visual Studio If the path to Microsoft Developer Studio on your system differs from the default
then change the appropriate definition of DEVSTUDIO. (Remember that there is a separate definition of DEVSTUDIO for
each version of MSVC, so be sure to change the correct definition.)

To run the make program, give the command:

nmake -f psi\msvc.mak

Rather than changing psi/msvc.mak, these values can also be specified on the make command line, i.e.

nmake -f psi\msvc.mak MSVC_VERSION=6 DEVSTUDIO="C:\Program Files\Microsoft Visual Studio"
nmake -f psi\msvc.mak MSVC_VERSION=7 DEVSTUDIO="C:\Program Files\Microsoft Visual Studio.
—.NET"

Note that double quotes have been added around the path for DEVSTUDIO due to the spaces in the path value.
This command line can also be put into a batch file.

You may get warning messages during compilation about various undefined and/or unsupported switches - this is
because the compiler switches are set in the makefiles, and are applied when building with all versions of Visual
Studio, but not all options are supported (or required) by all versions of Visual Studio. These warnings are benign and
can be ignored.

4.8.2 Microsoft Environment for 64-bit
Building Ghostscript for 64-bit Windows (AMD64 processor) requires Microsoft Visual Studio .NET 2005 or Microsoft
Visual Studio 2008 or later on 64-bit Windows. Cross compiling on 32-bit Windows is possible.

Compiling for 64-bit is similar to the Microsoft Environment instructions above, but with the addition of a WIN64
define.

To make Ghostscript use:

nmake -f psi/msvc.mak WIN64=

4.8. How to build Ghostscript from source (PC version) 31

Ghostscript Documentation, Release 10.03.1

Making self-extracting installers

You can build self-extracting Windows installers based on NSIS (Nullsoft Scriptable Install System). To do so, use the
nsis makefile target as well as any other options, for example:

nmake -f psi/msvc.mak WIN64= nsis

will create an nsis based installer for Ghostscript built for 64 bit Windows systems.

4.8.3 Microsoft Environment for WinRT

Ghostscript can be built in the form of a win32 DLL for use within a Windows Runtime application or Windows
Runtime component. Building for WinRT requires use of Microsoft Visual Studio 2012. There is a solution file that
can be loaded into VS 2012, in the directory winrt.

The WinRT application or component should include iapi.h from gs/psi and link with gsd1132metro.1lib from
gs/debugbin or gs/releasebin. Also any app using Ghostscript either directly or via a component should add
gsdll32metro.dll as “content”. This inclusion of the dll is necessary so that it will be packaged with the app. If
one wishes to be able to run the debugger on Ghostscript then gsd1132metro.pdb should also be added as content.

4.8.4 Cygwin32 gcc

It is possible to compile Ghostscript for MS Windows using the Cygwin32 gcc compiler, GNU make, using the “con-
figure” generated Makefile.

Information about this compiler and environment is at the Cygwin site.

MSys/Mingw

The configure build can be used to build Ghostscript on MSys/Mingw systems, but with a caveat. The msys-dvlpr
adds header files into the compiler’s header search paths which cause a clash, and the build will fail as a result. If you
have the msys-dvlpr package installed, and until a better solution is available you can work around this by temporarily
renaming the \mingw\msys\1.0\include directory so those headers are no longer found by the compiler.

4.9 How to build Ghostscript from source (MacOS version)

4.9.1 MacOS X

The unix source distribution (.tar.gz) builds fine on Darwin/MacOS X, albeit without a display device. You can
generally just use the Makefile generated by configure as your top-level makefile and get a reasonable default build.
This will allow you to use Ghostscript from the command line as a BSD-layer tool to rasterize postscript and pdf to
image files, and convert between the high-level formats supported by Ghostscript. See the instructions for the unix
build below for details of how to customize this build.

Note: If you have MacPorts installed, it can “confuse” the configure script because it includes some librares which
duplicate the “system” ones. This can cause missing symbol link errors. In order to resolve this, you can do:
LDFLAGS="-L/usr/1lib" ./configure. That will force the linker to search the default directory first, and thus
pick up the system libraries first.

32 Chapter 4. Building from Source

http://www.cygwin.com/
http://www.macports.org/

Ghostscript Documentation, Release 10.03.1

It is also possible to build “universal binaries” for MacOS X, containing i386 and x86_64 binaries in one file, using
the Makefile from configure. This can be achieved by using the following invocation of configure:

./configure CC="gcc -arch 1386 -arch x86_64 -arch ppc" CPP="gcc -E"

You can choose the combination of valid architectures (i386/x86_64/ppc) that you require.

The separate options for CC and CPP are required because some of the features used by configure to explore the capa-
bilities of the preprocessor are not compatible with having multiple -arch options.

Building a shared library on MacOS X is the same as for other Unix-like systems, the “configure” step is done normally,
and the “so” target is given to the make invocation, thus:

make so

The only difference compared to other Unix-like systems is that on OS X the resulting shared library is created with
the “.dylib” file name extension, instead of the more usual “.so0”.

4.10 How to build Ghostscript from source (Unix version)

Ghostscript now ships with a build system for unix-like operating systems based on GNU Autoconf. In general the
following should work to configure and build Ghostscript:

./configure
make

or

./configure
make so

for building Ghostscript as a shared library.
Please report any problems with this method on your system as a bug.

On modern unix systems, ./configure should create a Makefile which works in most scenarios. Manual tempering
and editing should rarely be needed nor recommended.

Note: If you're building Ghostscript from development source out of a repository instead of from a released
source package, you should run . /autogen. sh instead of ./configure. This script takes all the same options that
configure does.

(deprecated; see Autoconf-based method above) For the convenience of those already familiar with Ghostscript, the
old method based on hand-edited makefiles is still possible but no longer supported (and in many cases, simply do
not work without substantial expert manual-editing effort). It may also be helpful in getting Ghostscript to build on
very old platforms. The rest of this section deals exclusively with that older method and includes numerous pointers
regarding legacy systems.

(deprecated; see Autoconf-based method above) Before issuing the make command to build Ghostscript, you have to
make some choices, for instance:

* Which compiler to use.
¢ What features and devices to include.

e Whether to use system libraries for PNG and zlib.

4.10. How to build Ghostscript from source (Unix version) 33

Ghostscript Documentation, Release 10.03.1

* How to handle issues for your particular platform.

Be sure to check the sections on tool-, OS-, and hardware-specific issues for notes on your particular platform and
compiler. In fact, that is the first place to check if you build Ghostscript and it crashes or produces obviously incorrect
results.

4.10.1 make tools
You require a make tool which supports separate directories for the derived objects (such as object files, executables
and dynamically created header files) and the source files.

In general, GNU make is the recommended choice, and some features (such as the building of the Linux/Unix shared
library build (“make so”) are only available with GNU make.

Other make implementations are known to work, but are not guaranteed to do so.

GNU make

Current versions of GNU make have no problems building Ghostscript.

4.10.2 OS-specific issues

MacOS or Linux / OpenBSD
Running the autogen. sh script from the command line depends on having both autoconf and automake installed
on your system.

If this software is not already on your system (usually this can be found in the following location: usr/local/bin,
but it could be located elsewhere depending on your setup) then it can be installed from your OS’s package system.

Alternatively, it can be installed from GNU Software

Or, it can be installed via Brew by running:

brew install autoconf automake

Once built, these libraries can be found in your ghostpdl/sobin/ or ghostpdl/sodebugbin location depending on
your build command.

H-P RISC workstations

(see Autoconf-based method above)
* HP-UX versions before 11.0 do not support POSIX threads. Set SYNC=nosync in the makefile before building.

* Ghostscript builds on H-P machines with either GNU gcc or H-P’s ANSI-capable cc. The minimal, non-ANSI-
capable cc that shiped with some basic HPUX system does not work. If cc on your system doesn’t accept the
-Aa switch, then you need to get the full cc or gcc.

* If you use H-P’s compiler, be sure you have upgraded to a recent release. Many bizarre symptoms have been
reported trying to build Ghostscript with older, buggier compilers, for example:

— The link step fails with a message about “max’ not being defined.

— The build succeeds, but the resulting executable fails to start up, with an error message like “Initializing. ..
Unrecoverable error: typecheck in .registerencoding”.

34 Chapter 4. Building from Source

https://www.gnu.org/software/

Ghostscript Documentation, Release 10.03.1

— The build succeeds, but the resulting executable produces a black background on the first page of output.

It is reported that On HPUX 9.* you need at least compiler patch PHSS_5723 and d1d. sl patch PHSS_5734
to build Ghostscript. (As of late 1997, those patches are long obsolete; the current patches are compiler
PHSS_10357 and dld.sl PHSS_11246. It is unknown whether current Ghostscript releases work with
compiler/dld.sl versions older than these).

On HPUX 10.*, we don’t know what combinations of compiler version and switches work. It is reported that On
HPUX 10.20, setting CC=c89 and CFLAGS=+03 $ (XCFLAGS) works, contradicting the information in the next
paragraph, but this may be dependent on the specific compiler version.

In either HPUX version, you need to set CC=cc -Aa (or use -Ae if you prefer), and set
CFLAGS=-D_HPUX_SOURCE -0 $(XCFLAGS). Higher levels of optimization than -O may work depend-
ing on your compiler revision; some users have reported success with +O3, some have not.

Some users have reported needing -DNOSYSTIME and -D_POSIX_SOURCE in CFLAGS, but recent tests do not
show these to be necessary.

If you use gcc, it’s a good idea to have a recent release — at the very least 2.7.2.1 or later. You may be able to get
a working executable with an older gcc by removing -0 from CFLAGS.

IBM AIX

We recommend installing gcc and GNU make, and using the Autoconf-based method.

Other combinations are known to work, but are less well supported.

Recent veresions of Ghostscript can trigger a “TOC overflow’ error with some compilers on AIX. If this occurs, use
the linker flag -bbigtoc, which can either be added to your configure options:

configure LDFLAGS="-W1,-bbigtoc"

Or on the make command line:

make XLDFLAGS="-Wl,-bbigtoc"

Silicon Graphics

(see Autoconf-based method above)

Users have had a lot of problems with the MIPSpro compilers on SGI systems. We recommend using gcc. If you do
choose to use the MIPSpro compiler, please read the following carefully.

To make the optimizer allocate enough table space, set:

CFLAGS="-0limit 2500" (for older compilers) CFLAGS="-OPT:01imit=2500" (for newer com-
pilers)

MIPSpro compiler version 3.19 is “older”, and 7.1 is “newer”’; we aren’t sure at what point in between the latter
syntax was introduced.

With the compiler shipped with Irix 5.2, use the -ansi option.

The SGI C compiler may produce warnings about “Undefined the ANSI standard library defined macro
stdin/stdout/stderr”. To suppress these warnings, add -woff 608 to the definition of CFLAGS.

The SGI C compiler shipped with Irix 6.1 and 6.2 will not compile z1ib/deflate. c properly with optimization.
Compile this file separately without -0.

4.10.

How to build Ghostscript from source (Unix version) 35

Ghostscript Documentation, Release 10.03.1

* With IRIX 6.5.x and the MIPSpro 7.x compilers there have been reports about incorrect output and binaries that

cause segmentation faults. Various solutions have been suggested and you may want to try them in this order,
until you get a working binary:

Compile idict.c and isave.c separately without optimization after doing a normal compile; then re-
link.e.g.:

cc -OPT:0limit=2500 -I. -I./obj -o ./obj/idict.o -c ./idict.c
cc -OPT:0limit=2500 -I. -I./obj -o ./obj/isave.o -c ./isave.c

Set CFLAGS= (no optimization).

Use only -02. Compiler produces incorrect output with -03 or -Ofast=ip32 -show.

Irix 6.5.1m with MIPSpro compiler 7.2.1.1m, Irix 6.5.3m with MIPSpro compiler 7.2.1, and probably other
6.5x /7.2x combinations require compiling with the -032 option. Compiling with the (default) -n32 option
produces non-working executables. -02 is OK (possibly except for idict.c), but not -03.

4.10.3 Oracle/Sun

(see Autoconf-based method above)

* The Sun unbundled C compiler (SC1.0) doesn’t compile Ghostscript properly with the -fast option: Ghostscript

core-dumps in build_gs_font. With that compiler use -g, or use gcc instead.

* The Sun version of dbx often gives up with an error message when trying to load Ghostscript. If this happens,

use GNU gdb instead. (gdb is more reliable than dbx in other ways as well).

* A bug in some versions of z1ib results in an undefined symbol zmemcmp when compiling with Sun cc. Use gcc

instead.

4.10.4 Solaris

Solaris 2.2 may require setting EXTRALIBS=-1socket. Solaris 2.3 and later seem to require EXTRALIBS=-1ns1l
-lsocket -1lposix4.

For Solaris 2.6 (and possibly some other versions), if you set SHARE_LIBPNG=1, SHARE_ZLIB=1, or
SHARE_JPEG=1, you may need to set XLDFLAGS=-R /usr/local/xxx/lib:/usr/local/1ib using the full
path names of the relevant directories.

Solaris 2.n uses /usr/openwin/share/include for the X11 libraries rather than /usr/local/X/include.
Solaris 2.n typically has Type 1 fonts in /usr/openwin/1ib/X11/fonts/Typel/outline.

For Solaris 2.n in the makefile you must change the definition of INSTALL from install -cto /usr/ucb/
install -c.

You may need to set XLIBDIR to the directory that holds the X11 libraries, as for other SVR4 systems. Set
-DSVR4 in CFLAGS.

If you are using the SunPRO C compiler, don’t use optimization level -x03. On SPARC platforms the compiler
hangs; on Intel platforms the generated code is incorrect. With this compiler on Intel, do not use the -native flag:
floating point computations become unacceptably inaccurate. You can use -xcg92 (SPARC V8) and -dalign
for better performance.

One user reported compiling from source on a Linux NFS mounted volume failed. Compiling from a local
volume was the workaround.

36

Chapter 4. Building from Source

Ghostscript Documentation, Release 10.03.1

4.11 Other environments

4.11.1 Environments lacking multi-threading
All environments mentioned here by name have multi-threading capability. However, if your environment doesn’t, you
can remove all need for multi-threading by setting SYNC=nosync in the top-level makefile. Note that you will not be

able to use any so-called “async” drivers (drivers that overlap interpretation and rasterization) if you do this. No such
drivers are in the DEVICE_DEVS* lists of any makefile that we distribute.

4.11.2 Plan 9

Use unix-gcc.mak, editing it to define:

CC=cc GCFLAGS=-D_BSD_EXTENSION -DPlan9

You will also probably have to edit many path names.

4.12 How to build Ghostscript with UFST

Note: This section is only for customers who have a Monotype Imaging UFST license. Other users please skip this
section.

Ghostscript sources do not include UFST sources. You need to obtain them separately. The Ghostscript distributed
source include only some source modules that provide a bridge to UFST. You will also need an additional, UFST
specific makefile: contact Ghostscript support for more information.

If optioned in, the Ghostscript build system will build the UFST as part of the normal bulid process (previously, the
UFST was required to be built separately).

To build Ghostscript with UFST, specify additional options for “make”:

UFST_BRIDGE=1
Forces the UFST bridge to build.

UFST_ROOT=path
Specifies the path to UFST root directory or folder.

UFST_CFLAGS=options
Specifies C compiler options for UFST library. Refer to UFST manual for information about them.

UFST_LIB_EXT=extension
Sets the file name extension for object libraries. You must use the appropriate one for your platform and linker.

An example for Unix/GCC :

UFST_BRIDGE=1 UFST_ROOT=../ufst UFST_CFLAGS=-DGCCx86 UFST_LIB_EXT=.a

Starting with Ghostscript 9.x (Summer 2010), the above options are conveniently inserted in the Makefile with (this
also automatically disable the freetype bridge):

./configure --with-ufst=../ufst

4.11. Other environments 37

Ghostscript Documentation, Release 10.03.1

For Windows/MSVC you need only specify UFST_ROOT. msvc.mak sets the other options automatically.

38 Chapter 4. Building from Source

https://discord.gg/TSpYGBW4eq

CHAPTER
FIVE

INSTALLING

5.1 Downloading

See Ghostscript releases if you need to download a Ghostscript release.

5.2 Overview of how to install Ghostscript

You must have four things to run Ghostscript:

1. The Ghostscript executable file; on some operating systems, more than one file is required. These are entirely
platform-specific. See below for details.

2. Initialization files that Ghostscript reads in when it starts up; these are the same on all platforms.
3. Check the following:

* gs_*.ps unless Ghostscript was compiled using the “compiled initialization files” option. See the docu-
mentation of PostScript files distributed with Ghostscript.

e pdf_*.ps if Ghostscript was compiled with the ability to interpret Adobe Portable Document Format
(PDF) files, that is, pdf . dev was included in FEATURE_DEVS when Ghostscript was built.

* Fontmap and Fontmap.GS (or the appropriate Fontmap . xxx for your platform), unless you plan always
to invoke Ghostscript with the -dNOFONTMAP switch.

4. Fonts, for rendering text. These are platform-independent, but if you already have fonts of the right kind on your
platform, you may be able to use those. See below for details. Also see the documentation on fonts.

The usage documentation describes the search algorithms used to find initialization files and font files. The per-platform
descriptions that follow tell you where to install these files.

5.3 Installing Ghostscript on Unix

Ghostscript uses the common configure, build and install method common to many modern software packages.
In general the following with suffice to build Ghostscript:

./configure
make

and then it may be installed in the default location with:

39

https://ghostscript.com/releases

Ghostscript Documentation, Release 10.03.1

make install

This last command may need to be performed with super user privileges.

You can set the installation directory by adding --prefix=path to the configure invocation in the first step. The
default prefix is /usr/local, which is to say the gs executable is installed as /usr/local/bin/gs.

A list of similar configuration options is available via . /configure --help.

For more detailed information on building Ghostscript see how fo build Ghostscript on Unix in the documentation on
building Ghostscript, especially regarding information on using the older hand edited makefile approach. Whatever
configuration method you use, execute make install to install the executable and all the required and ancillary files
after the build is complete.

5.3.1 Fonts

The makefile installs all the files except fonts under the directory defined in the makefile as prefix. Fonts need to
be installed separately. The fonts should be installed in {prefix}/share/ghostscript/fonts. (That is, /usr/
local/share/ghostscript/fonts/ if you used the default configuration above.)

If you have Adobe Acrobat installed, you can use the Acrobat fonts in place of the ones distributed with with
Ghostscript by adding the Acrobat fonts directory to GS_FONTPATH and removing these fonts from

Fontmap.GS:
Courier, Courier-Bold, Courier-BoldOblique, Courier-Oblique, Helvetica, Helvetica-Bold,

Helvetica-BoldOblique, Helvetica-Oblique, Symbol, Times-Bold, Times-BoldItalic,
Times-Italic, Times-Roman, ZapfDingbats

Similarly, you can have Ghostscript use other fonts on your system by adding entries to the fontmap or adding the
directories to the GS_FONTMAP environment variable. See the usage documentation for more information.

For example, many linux distributions place fonts under /usr/share/fonts.

5.3.2 Ghostscript as a shared object

If you’ve built Ghostscript as a shared object, instead of make install, you must use make soinstall. See how fo
build Ghostscript as a shared object for more details.

5.3.3 Additional notes on Linux

For Linux, you may be able to install or upgrade Ghostscript from precompiled RPM files using:

rpm -U ghostscript-N.NN-1.i386.rpm
rpm -U ghostscript-fonts-N.NN-1.noarch.rpm

However, please note that we do not create RPMs for Ghostscript, and we take no responsibility for RPMs created by
others.

40 Chapter 5. Installing

http://www.rpm.org/

Ghostscript Documentation, Release 10.03.1

5.4 Installing Ghostscript on MS Windows

We usually distribute Ghostscript releases for Windows as a binary installer, for the convenience of most users.

5.4.1 Windows 3.1 (16-bit)

The last version to run on 16-bit Windows 3.1 was Ghostscript 4.03.

5.4.2 Windows 95, 98, Me

The last version to be available as a binary for Windows 95/98/Me was 8.60. Although building from source with
Visual Studio 2003 should produce a working binary for those versions.

5.4.3 Windows NT4, 2000, XP, 2003 or Vista (32-bit)

The installer is normally named gs###w32.exe, where ### is the release number (e.g., 871 for Ghostscript 8.71, 910
for Ghostscript 9.10).

5.4.4 Windows XP x64 edition, 2003 or Vista (64-bit)

The x64 installer is normally named gs###w64 . exe This is for 64-bit Windows operating systems based on the x64
instruction set. Do not use this on 64-bit processors running 32-bit Windows.

5.4.5 Installing

To install Ghostscript on Windows, you should run the installer executable.

The installer is NSIS-based and supports a few standard NSIS options: /NCRC disables the CRC check, /D sets the
default installation directory (It must be the last parameter used in the command line and must not contain any quotes,
even if the path contains spaces. Only absolute paths are supported).

5.4.6 General Windows configuration

The installer includes files in these subdirectories:
e gs#.##\bin
o gs#.##\examples
o gs#.##\1ib
e gs#.##\doc
e gs#.##\Resource
e fonts

The actual executable files for the 32-bit Windows install, in the gs#.##\bin subdirectory, are:

5.4. Installing Ghostscript on MS Windows 41

Ghostscript Documentation, Release 10.03.1

GSWIN32C.EXE Ghostscript as a 32-bit Windows command line program. This is usually the preferred exe-
cutable.

GSWIN32.EXE 32-bit Ghostscript using its own window for commands.

GSDLL32.DLL 32-bit dynamic link library containing most of Ghostscript’s functionality.

For the 64-bit Windows install, also in the gs# . ##\bin subdirectory, they are:

GSWING64C.EXE Ghostscript as a 64-bit Windows command line program. This is usually the preferred exe-
cutable.

GSWIN64.EXE 64-bit Ghostscript using its own window for commands.

GSDLL64.DLL 64-bit dynamic link library containing most of Ghostscript’s functionality.

For printer devices, the default output is the default printer. This can be modified as follows:

-sOutputFile="%printer%printer name"

If your printer is named “HP DeskJet 500 then you would use -sOutputFile="%printer%HP DeskJet 500".

If Ghostscript fails to find an environment variable, it looks for a registry value of the same name under the key

HKEY_CURRENT_USER\Software\GPL Ghostscript\#.##

or if that fails, under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\GPL Ghostscript\#.##

where #.## is the Ghostscript version number.
Ghostscript will attempt to load the Ghostscript dynamic link library GSDLL32.DLL in the following order:
¢ In the same directory as the Ghostscript executable.

* If the environment variable GS_DLL is defined, Ghostscript tries to load the Ghostscript dynamic link library
(DLL) with the name given.

* Using the standard Windows library search method: the directory from which the application loaded, the current
directory, the Windows system directory, the Windows directory and the directories listed in the PATH environ-
ment variable.

The Ghostscript installer will create registry values for the environment variables GS_LIB and GS_DLL.

5.4.7 Uninstalling Ghostscript on Windows

To uninstall Ghostscript, use the Control Panel, Add/Remove Programs and remove “Ghostscript #.## and “Ghostscript
Fonts”. (The entries may be called “GPL Ghostscript” or “AFPL Ghostscript”, rather than just “Ghostscript”, depending
on what version of Ghostscript was installed).

Alternatively, an uninstall shortcut is also available in the Start Menu group.

42 Chapter 5. Installing

Ghostscript Documentation, Release 10.03.1

5.5 Installing Ghostscript on OpenVMS

Support for OpenVMS has stagnated (and almost certainly bit-rotted), and as the core development team has no access
to an OpenVMS environment, we are unable to bring it up to date. We will consider patches from contributors if any
wish to take on the task of getting it working again. Given the very limited appeal of OpenVMS these days, however,
we are unlikely to consider patches with invasive code changes.

You need the file GS . EXE to run Ghostscript on OpenVMS, and installing Ghostscript on an OpenVMS system requires
building it first.

The following installation steps assume that the Ghostscript directory is DISK1: [DIR.GHOSTSCRIPT]. Yours will
almost certainly be in a different location so adjust the following commands accordingly.

* Download the fonts and unpack them into DISK1: [DIR.GHOSTSCRIPT.LIB].

 Enable access to the program and support files for all users with:

$ set file/prot=w:re DISK1:[DIR]GHOSTSCRIPT.dir
$ set file/prot=w:re DISK1:[DIR.GHOSTSCRIPT...]*.*

 Optionally, add the Ghostscript help instructions to your system wide help file:

$ lib/help sys$help:HELPLIB.HLB DISK1: [DIR.GHOSTSCRIPT.DOC]GS-VMS.HLP

* Lastly, add the following lines to the appropriate system wide or user specific login script.

$ define gs_exe DISK1:[DIR.GHOSTSCRIPT.BIN]
$ define gs_lib DISK1:[DIR.GHOSTSCRIPT.EXE]
$ gs :== $gs_exe:gs.exe

If you have DECWindows/Motif installed, you may wish to replace the FONTMAP . GS file with FONTMAP . VMS. Read the
comment at the beginning of the latter file for more information.

5.6 Installing Ghostscript on MacOS

The simplest way to install Ghostscript on a Mac would be to use MacPorts or Homebrew.
The installation on MacPorts would be as follows:

¢ Install MacPorts - https://www.macports.org/install.php

¢ Goto https://ports.macports.org/port/ghostscript/ & follow the instructions there.

— If your MacPorts is out of date and cannot find the latest verison of Ghostscript be sure to update
MacPorts.

At the end of the install, run gs --version in a new Terminal window to validate your installation.

5.5. Installing Ghostscript on OpenVMS 43

https://ports.macports.org/port/ghostscript/
https://formulae.brew.sh/formula/ghostscript
https://www.macports.org/install.php
https://ports.macports.org/port/ghostscript/
https://guide.macports.org/chunked/using.html
https://guide.macports.org/chunked/using.html
https://discord.gg/TSpYGBW4eq

Ghostscript Documentation, Release 10.03.1

44 Chapter 5. Installing

CHAPTER
SIX

USING

This document describes how to use the command line Ghostscript client. Ghostscript is also used as a general engine
inside other applications (for viewing files for example). Please refer to the documentation for those applications for
using Ghostscript in other contexts.

6.1 Invoking Ghostscript

The command line to invoke Ghostscript is essentially the same on all systems, although the name of the executable
program itself may differ among systems. For instance, to invoke Ghostscript on unix-like systems type:

gs [options] {filename 1} ... [options] {filename N} ...

Here are some basic examples. The details of how these work are described below.

6.1.1 To view a file

gs -dSAFER -dBATCH document.pdf

Note: You’ll be prompted to press return between pages.

6.1.2 To convert a figure to an image file

gs -dSAFER -dBATCH -dNOPAUSE -sDEVICE=pnglém -dGraphicsAlphaBits=4 \
-sOutputFile=tiger.png tiger.eps

6.1.3 To render the same image at 300 dpi

gs -dSAFER -dBATCH -dNOPAUSE -sDEVICE=pnglém -r300 \
-sOutputFile=tiger_300.png tiger.eps

45

Ghostscript Documentation, Release 10.03.1

6.1.4 To render a figure in grayscale

gs -dSAFER -dBATCH -dNOPAUSE -sDEVICE=pnggray -sOutputFile=figure.png figure.pdf

6.1.5 To rasterize a whole document

gs -dSAFER -dBATCH -dNOPAUSE -sDEVICE=pgmraw -r150 \
-dTextAlphaBits=4 -sOutputFile="paper-%00d.pgm' paper.ps

6.1.6 Convert a PostScript document to PDF

ps2pdf file.ps

The output is saved as file.pdf.

Note: There are other utility scripts besides ps2pdf, including pdf2ps, ps2epsi, pdf2dsc, ps2ascii, ps2ps and
ps2ps2. These just call Ghostscript with the appropriate (if complicated) set of options. You can use the ‘ps2’ set with
eps files.

Ghostscript is capable of interpreting PostScript, encapsulated PostScript (EPS), DOS EPS (EPSF), and Adobe Portable
Document Format (PDF). The interpreter reads and executes the files in sequence, using the method described under
“File searching” to find them.

The interpreter runs in interactive mode by default. After processing the files given on the command line (if any) it reads
further lines of PostScript language commands from the primary input stream, normally the keyboard, interpreting each
line separately. To quit the interpreter, type “quit”. The ~-dBATCH -dNOPAUSE options in the examples above disable
the interactive prompting. The interpreter also quits gracefully if it encounters end-of-file or control-C.

The interpreter recognizes many options. An option may appear anywhere in the command line, and applies to all files
named after it on the line. Many of them include “=" followed by a parameter. The most important are described in
detail here. Please see the reference sections on Command line options and Devices for a more complete listing.

6.1.7 Help at the command line: gs -h

You can get a brief help message by invoking Ghostscript with the -h or -7 switch, like this:

gs -h
gs -7

The message shows for that version of the Ghostscript executable:
¢ the version and release information.
¢ the general format of the command line.
* afew of the most useful options.
¢ the formats it can interpret.
* the available output devices.

* the search path.

46 Chapter 6. Using

Devices.html

Ghostscript Documentation, Release 10.03.1

* the bug report address.

On other systems the executable may have a different name:

System Invocation Name
Unix gs

VMS gs

MS Windows 95 and later gswin32.exe

gswin32c.exe
gswinb4.exe
gswinb4c.exe
0S/2 2s0s2

On Windows, the two digit number indicates the word length of the system for which the binary was built (so gswin32.
exe is for x86 Windows systems, whilst gswin64.exe is for x86_64 Windows systems). And the “c” suffix indicates
a Windows console based binary (note that the “display device” window will still appear).

6.2 Selecting an output device

Ghostscript has a notion of ‘output devices’ which handle saving or displaying the results in a particular format.
Ghostscript comes with a diverse variety of such devices supporting vector and raster file output, screen display, driving
various printers and communicating with other applications.

The command line option '-sDEVICE=device' selects which output device Ghostscript should use. If this option
isn’t given the default device (usually a display device) is used. Ghostscript’s built-in help message (gs -h) lists the
available output devices. For complete description of the devices distributed with Ghostscript and their options, please
see the Devices section of the documentation.

Note that this switch must precede the name of the first input file, and only its first use has any effect. For example, for
printer output in a configuration that includes an Epson printer driver, instead of just 'gs myfile.ps' you might use:

gs -sDEVICE=epson myfile.ps

The output device can also be set through the GS_DEVICE environment variable.

Once you invoke Ghostscript you can also find out what devices are available by typing 'devicenames =="' at the
interactive prompt. You can set the output device and process a file from the interactive prompt as well:

(epson) selectdevice
(myfile.ps) run

All output then goes to the Epson printer instead of the display until you do something to change devices. You can
switch devices at any time by using the selectdevice procedure, for instance like one of these:

(x1lalpha) selectdevice
(epson) selectdevice

6.2. Selecting an output device 47

Devices.html

Ghostscript Documentation, Release 10.03.1

6.2.1 Output resolution

Some printers can print at several different resolutions, letting you balance resolution against printing speed. To select
the resolution on such a printer, use the -r switch:

gs -sDEVICE=printer -rXRESxYRES

where XRES and YRES are the requested number of dots (or pixels) per inch. Where the two resolutions are same, as is
the common case, you can simply use -rres.

The -r option is also useful for controlling the density of pixels when rasterizing to an image file. It is used this way
in the examples at the beginning of this document.

6.2.2 Output to files

Ghostscript also allows you to control where it sends its output. With a display device this isn’t necessary as the device
handles presenting the output on screen internally. Some specialized printer drivers operate this way as well, but most
devices are general and need to be directed to a particular file or printer.

To send the output to a file, use the -sOutputFile= switch or the -o switch (below). For instance, to direct all output
into the file ABC.xyz, use:

gs -sOutputFile=ABC.xyz

When printing on MS Windows systems, output normally goes directly to the printer, PRN. On Unix and VMS systems
it normally goes to a temporary file which is sent to the printer in a separate step. When using Ghostscript as a file
rasterizer (converting PostScript or PDF to a raster image format) you will of course want to specify an appropriately
named file for the output.

Ghostscript also accepts the special filename ‘-’ which indicates the output should be written to standard output (the
command shell).

Be aware that filenames beginning with the character % have a special meaning in PostScript. If you need to specify a
file name that actually begins with %, you must prepend the %o0s% filedevice explicitly. For example to output to a file
named %abc, you need to specify:

gs -sOutputFile=%os%%abc

Please see Ghostscript and the PostScript Language and the PostScript Language Reference Manual for more details
on % and filedevices.

Note: On MS Windows systems, the % character also has a special meaning for the command processor (shell), so you
will have to double it, e.g.:

gs -sOutputFile=%%o0s%%%%abc

Note, some devices (e.g. pdfwrite, ps2write) only write the output file upon exit, but changing the OutputFile device
parameter will cause these devices to emit the pages received up to that point and then open the new file name given
by OutputFile.

For example, in order to create two PDF files from a single invocation of Ghostscript the following can be used:

gs -sDEVICE=pdfwrite -o tiger.pdf examples/tiger.eps -c "<< /OutputFile (colorcir.pdf) >>
- setpagedevice" -f examples/colorcir.ps

48 Chapter 6. Using

Language.html

Ghostscript Documentation, Release 10.03.1

One page per file

Specifying a single output file works fine for printing and rasterizing figures, but sometimes you want images of each
page of a multi-page document. You can tell Ghostscript to put each page of output in a series of similarly named files.
To do this place a template '%d' in the filename which Ghostscript will replace with the page number.

Note: Since the % character is used to precede the page number format specification, in order to represent a file name
that contains a %, double % characters must be used. For example for the file my%foo the OutputFile string needs to
be my%%foo.

The format can in fact be more involved than a simple '%d'. The format specifier is of a form similar to the C printf
format. The general form supported is:

%[flags] [width][.precision] [1]type

where: flags is one of: #+-
type is one of: diuoxX

For more information, please refer to documentation on the C printf format specifications. Some examples are:

-sOutputFile=ABC-%d.png

produces 'ABC-1.png', ... , "ABC-10.png',
-sOutputFile=ABC-%03d.pgm
produces 'ABC-001.pgm', ... , "ABC-010.pgm',
-sOutputFile=ABC_p%04d.tiff
produces 'ABC_p0001.tiff', ... , "ABC_pO0O510.tiff', ... , "ABC_p5238.tiff'

Note, however that the one page per file feature may not supported by all devices. Also, since some devices write output
files when opened, there may be an extra blank page written (pdfwrite, ps2write, eps2write, pxlmono, pxlcolor).

As noted above, when using MS Windows console (command.com or cmd.exe), you will have to double the % character
since the % is used by that shell to prefix variables for substitution, e.g.,

gswin32c -sOutputFile=ABC%%03d.xyz

-0 option

As a convenient shorthand you can use the -0 option followed by the output file specification as discussed above. The
-0 option also sets the -dBATCH and -dNOPAUSE options. This is intended to be a quick way to invoke Ghostscript
to convert one or more input files.

For instance, to convert somefile.ps to JPEG image files, one per page, use:

gs -sDEVICE=jpeg -o out-%d.jpg somefile.ps

is equivalent to:

gs -sDEVICE=jpeg -sOutputFile=out-%d.jpg -dBATCH -dNOPAUSE somefile.ps

6.2. Selecting an output device 49

Ghostscript Documentation, Release 10.03.1

6.2.3 Choosing paper size
Ghostscript is distributed configured to use U.S. letter paper as its default page size. There are two ways to select other
paper sizes from the command line:

If the desired paper size is listed in the section on paper sizes known to Ghostscript below, you can select it as the
default paper size for a single invocation of Ghostscript by using the -sPAPERSIZE= switch, for instance:

-sPAPERSIZE=a4
-sPAPERSIZE=1egal

Otherwise you can set the page size using the pair of switches:

-dDEVICEWIDTHPOINTS=w -dDEVICEHEIGHTPOINTS=h

Where w be the desired paper width and h be the desired paper height in points (units of 1/72 of an inch).

Individual documents can (and often do) specify a paper size, which takes precedence over the default size. To force a
specific paper size and ignore the paper size specified in the document, select a paper size as just described, and also
include the -dFIXEDMEDIA switch on the command line.

The default set of paper sizes will be included in the currentpagedevice in the InputAttributes dictionary with
each paper size as one of the entries. The last entry in the dictionary (which has numeric keys) is a non-standard
(Ghostscript extension) type of PageSize where the array has four elements rather than the standard two elements. This
four element array represents a page size range where the first two elements are the lower bound of the range and the
second two are the upper bound. By default these are [0, O] for the lower bound and [16#fFftf, 16#{fttf] for the upper
bound.

The range type of PageSize is intended to allow flexible page size sepcification for non-printer file formats such as
JPEG, PNG, TIFF, EPS, ...

For actual printers, either the entire InputAttributes dictionary should be replaced or the range type entry should
not be included. To simplify using the default page sizes in the InputAttributes dictionary, the command line
option ~-dNORANGEPAGESIZE can be used. Using this option will result in automatic rotation of the document page if
the requested page size matches one of the default page sizes.

When the -dFIXEDMEDIA switch is given on the command line, the InputAttributes dictionary will only be pop-
ulated with the single page size. This allows the -~dPSFitPage option to fit the page size requested in a PostScript file
to be rotated, scaled and centered for the best fit on the specified page.

6.2.4 Changing the installed default paper size

You can change the installed default paper size on an installed version of Ghostscript, by editing the initialization file
gs_init.ps. This file is usually in the Resource/Init directory somewhere in the search path. See the section on
finding files for details.

Find the line:

% /DEFAULTPAPERSIZE (a4) def

Then to make A4 the default paper size, uncomment the line to change this to:

/DEFAULTPAPERSIZE (a4) def

For a4 you can substitute any paper size Ghostscript knows.

This supecedes the previous method of uncommenting the line % (a4)

50 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

Sometimes the initialization files are compiled into Ghostscript and cannot be changed.

On Windows and some Linux builds, the default paper size will be selected to be a4 or letter depending on the locale.

6.3 Interacting with pipes

As noted above, input files are normally specified on the command line. However, one can also “pipe” input into
Ghostscript from another program by using the special file name ‘-’ which is interpreted as standard input. Examples:

{some program producing ps} | gs [options] -
zcat paper.ps.gz | gs -

When Ghostscript finishes reading from the pipe, it quits rather than going into interactive mode. Because of this,
options and files after the ‘-’ in the command line will be ignored.

On Unix and MS Windows systems you can send output to a pipe in the same way. For example, to pipe the output to
1pr, use the command:

gs -q -sOutputFile=- | lpr

In this case you must also use the -q switch to prevent Ghostscript from writing messages to standard output which
become mixed with the intended output stream.

Also, using the -sstdout=%stderr option is useful, particularly with input from PostScript files that may print to
stdout.

Similar results can be obtained with the %stdout and %pipe¥% filedevices. The example above would become:

gs -sOutputFile=%stdout -q | lpr

or:

gs -sOutputFile=%pipe%lpr

(again, doubling the % character on MS Windows systems.)

In the last case, -q isn’t necessary since Ghostscript handles the pipe itself and messages sent to stdout will be printed
as normal.

6.4 Using Ghostscript with PDF files

Ghostscript is normally built to interpret both PostScript and PDF files, examining each file to determine automatically
whether its contents are PDF or PostScript. All the normal switches and procedures for interpreting PostScript files
also apply to PDF files, with a few exceptions. In addition, the pdf2ps utility uses Ghostscript to convert PDF to (Level
2) PostScript.

6.3. Interacting with pipes 51

Ghostscript Documentation, Release 10.03.1

6.4.1 Switches for PDF files

Here are some command line options specific to PDF:

-dPDFINFO

Starting with release 9.56.0 this new switch will work with the PDF interpreter (GhostPDF) and with the PDF interpreter
integrated into Ghostscript. When this switch is set the interpreter will emit information regarding the file, similar to
that produced by the old pdf_info.ps program in the ‘lib’ folder. The format is not entirely the same, and the search
for fonts and spot colours is ‘deeper’ than the old program; pdf_info.ps stops at the page level whereas the PDFINFO
switch will descend into objects such as Forms, Images, type 3 fonts and Patterns. In addition different instances of
fonts with the same name are now enumerated.

Unlike the pdf_info.ps program there is no need to add the input file to the list of permitted files for reading (using
—permit-file-read).

-dPDFFitPage

Rather than selecting a PageSize given by the PDF MediaBox, BleedBox (see -dUseBleedBox), TrimBox (see
-dUseTrimBox), ArtBox (see -dUseArtBox), or CropBox (see -dUseCropBox), the PDF file will be scaled to fit
the current device page size (usually the default page size). This is useful for creating fixed size images of PDF files
that may have a variety of page sizes, for example thumbnail images.

This option is also set by the -dFitPage option.

-dPrinted & -dPrinted=false

Determines whether the file should be displayed or printed using the “screen” or “printer”” options for annotations and
images. With -dPrinted, the output will use the file’s “print” options; with ~-dPrinted=false, the output will use
the file’s “screen” options. If neither of these is specified, the output will use the screen options for any output device

that doesn’t have an OutputFile parameter, and the printer options for devices that do have this parameter.

-dUseBleedBox

Sets the page size to the BleedBox rather than the MediaBox. defines the region to which the contents of the page should
be clipped when output in a production environment. This may include any extra bleed area needed to accommodate
the physical limitations of cutting, folding, and trimming equipment. The actual printed page may include printing
marks that fall outside the bleed box.

-dUseTrimBox

Sets the page size to the TrimBox rather than the MediaBox. The trim box defines the intended dimensions of the
finished page after trimming. Some files have a TrimBox that is smaller than the MediaBox and may include white
space, registration or cutting marks outside the CropBox. Using this option simulates appearance of the finished printed

page.

52 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

-dUseArtBox

Sets the page size to the ArtBox rather than the MediaBox. The art box defines the extent of the page’s meaningful
content (including potential white space) as intended by the page’s creator. The art box is likely to be the smallest box.
It can be useful when one wants to crop the page as much as possible without losing the content.

-dUseCropBox

Sets the page size to the CropBox rather than the MediaBox. Unlike the other “page boundary” boxes, CropBox does
not have a defined meaning, it simply provides a rectangle to which the page contents will be clipped (cropped). By
convention, it is often, but not exclusively, used to aid the positioning of content on the (usually larger, in these cases)
media.

-sPDFPassword=password

Sets the user or owner password to be used in decoding encrypted PDF files. For files created with encryption method
4 or earlier, the password is an arbitrary string of bytes; with encryption method 5 or later, it should be text in either
UTEF-8 or your locale’s character set (Ghostscript tries both).

-dShowAnnots=false

Don’t enumerate annotations associated with the page Annots key. Annotations are shown by default.

In addition, finer control is available by defining an array /ShowAnnotTypes. Annotation types listed in this array will
be drawn, whilst those not listed will not be drawn.

To use this feature: -c "/ShowAnnotTypes [....] def" -f <input file>

Where the array can contain one or more of the following names: /Stamp, /Squiggly, /Underline, /Link, /Text,
/Highlight, /Ink, /FreeText, /StrikeOut and /stamp_dict.

For example, adding the follow to the command line: -c "/ShowAnnotTypes [/Text /UnderLine] def" -£f
<input file> would draw only annotations with the subtypes “Text” and “UnderLine”.

-dShowAcroForm=false
Don’t show annotations from the Interactive Form Dictionary (AcroForm dictionary). By default, AcroForm processing

is now enabled because Adobe Acrobat does this. This option is provided to restore the previous behavior which
corresponded to older Acrobat.

-dNoUserUnit

Ignore UserUnit parameter. This may be useful for backward compatibility with old versions of Ghostscript and
Adobe Acrobat, or for processing files with large values of UserUnit that otherwise exceed implementation limits.

6.4. Using Ghostscript with PDF files 53

Ghostscript Documentation, Release 10.03.1

-dRENDERTTNOTDEF

If a glyph is not present in a font the normal behaviour is to use the /.notdef glyph instead. On TrueType fonts, this is
often a hollow square. Under some conditions Acrobat does not do this, instead leaving a gap equivalent to the width of
the missing glyph, or the width of the /.notdef glyph if no /Widths array is present. Ghostscript now attempts to mimic
this undocumented feature using a user parameter RenderTTNotdef. The PDF interpreter sets this user parameter to
the value of RENDERTTNOTDEF in systemdict, when rendering PDF files. To restore rendering of /.notdef glyphs from
TrueType fonts in PDF files, set this parameter to true.

These command line options are no longer specific to PDF, but have some specific differences with PDF files:

-dFirstPage=pagenumber

Begin on the designated page of the document. Pages of all documents in PDF collections are numbered sequentionally.

-dLastPage=pagenumber

Stop after the designated page of the document. Pages of all documents in PDF collections are numbered sequentionally.

Note: The PDF and XPS interpreters allow the use of a -~dLastPage less than -dFirstPage. In this case the pages
will be processed backwards from LastPage to FirstPage.

-sPagelList=pageranges

Page ranges are separated by a comma °,”. Each range of pages can consist of:
* (a) asingle page number.
¢ (b) arange with a starting page number, followed by a dash ‘-’ followed by an ending page number.
* (c) arange with a starting page number, followed by a dash °-> which ends at the last page.

e (d) the keyword “even” or “odd”, which optionally can be followed by a colon ‘:’ and a page range. If there is
no page range then all even or odd pages are processed in forward order.

e (e) arange with an initial dash ‘-’ followed by and ending page number which starts at the last page and ends
at the specified page (PDF and XPS only).

For example:

-sPagelList=1,3,5 indicates that pages 1, 3 and 5 should be processed.

-sPagelList=5-10 indicates that pages 5, 6, 7, 8, 9 and 10 should be processed.
-sPagelist=1,5-10,12- indicates that pages 1, 5, 6, 7, 8, 9, 10 and 12 onwards should be.
—processed.

-sPagelist=o0dd:3-7,9-,-1,8 processes pages 3, 5, 7, 9, 10, 11, ..., last, last, last-1,
—.., 1, 8

Note: Use of PageList overrides FirstPage and/or LastPage, if you set these as well as PageList they will be
ignored.

Be aware that using the %d syntax for -sOutputFile=. .. does not reflect the page number in the original document. If
you chose (for example) to process even pages by using -sPageList=even, then the output of -sOutputFile=out%d.
png would still be outl.png, out2.png, out3.png etc.

54 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

For PostScript or PCL input files, the list of pages must be given in increasing order, you cannot process pages out of
order or repeat pages and this will generate an error. PCL and PostScript require that all the pages must be interpreted,
however since only the requested pages are rendered, this can still lead to savings in time.

The PDF and XPS interpreters handle this in a slightly different way. Because these file types provide for random
access to individual pages in the document these inerpreters only need to process the required pages, and can do so in
any order.

Because the PostScript and PCL interpreters cannot determine when a document terminates, sending multple files
as input on the command line does not reset the PageList between each document, each page in the second and
subsequent documents is treated as following on directly from the last page in the first document. The PDF interpreter,
however, does not work this way. Since it knows about individual PDF files the PageList is applied to each PDF file
separately. So if you were to set -sPageList=1, 2 and then send two PDF files, the result would be pages 1 and 2 from
the first file, and then pages 1 and 2 from the second file. The PostScript interpreter, by contrast, would only render
pages 1 and 2 from the first file. This means you must exercise caution when using this switch, and probably should
not use it at all when processing a mixture of PostScript and PDF files on the same command line.

6.4.2 Problems interpreting a PDF file

Occasionally you may try to read or print a ‘PDF’ file that Ghostscript doesn’t recognize as PDF, even though the
same file can be opened and interpreted by an Adobe Acrobat viewer. In many cases, this is because of incorrectly
generated PDF. Acrobat tends to be very forgiving of invalid PDF files. Ghostscript tends to expect files to conform to
the standard. For example, even though valid PDF files must begin with %PDF, Acrobat will scan the first 1000 bytes
or so for this string, and ignore any preceding garbage.

In the past, Ghostscript’s policy has been to simply fail with an error message when confronted with these files. This
policy has, no doubt, encouraged PDF generators to be more careful. However, we now recognize that this behavior
is not very friendly for people who just want to use Ghostscript to view or print PDF files. Our new policy is to try to
render broken PDF’s, and also to print a warning, so that Ghostscript is still useful as a sanity-check for invalid files.

6.4.3 PDF files from standard input

The PDF language, unlike the PostScript language, inherently requires random access to the file. If you provide PDF
to standard input using the special filename ‘-’, Ghostscript will copy it to a temporary file before interpreting the PDF.

6.5 Using Ghostscript with EPS files

Encapsulated PostScript (EPS) files are intended to be incorporated in other PostScript documents and may not dis-
play or print on their own. An EPS file must conform to the Document Structuring Conventions, must include a
%%BoundingBox line to indicate the rectangle in which it will draw, must not use PostScript commands which will
interfere with the document importing the EPS, and can have either zero pages or one page. Ghostscript has support for
handling EPS files, but requires that the %%BoundingBox be in the header, not the trailer. To customize EPS handling,
see EPS parameters.

For the official description of the EPS file format, please refer to the Adobe documentation.

6.5. Using Ghostscript with EPS files 55

Ghostscript Documentation, Release 10.03.1

6.6 Using Ghostscript with overprinting and spot colors

In general with PostScript and PDF interpreters, the handling of overprinting and spot colors depends upon the process
color model of the output device. Devices that produce gray or RGB output have an additive process color model.
Devices which produce CM YK output have a subtractive process color model. Devices may, or may not, have support
for spot colors.

Note: The differences in appearance of files with overprinting and spot colors caused by the differences in the color
model of the output device are part of the PostScript and PDF specifications. They are not due to a limitation in the
implementation of Ghostscript or its output devices.

With devices which use a subtractive process color model, both PostScript and PDF allow the drawing of objects using
colorants (inks) for one or more planes without affecting the data for the remaining colorants. Thus the inks for one
object may overprint the inks for another object. In some cases this produces a transparency like effect. (The effects of
overprinting should not be confused with the PDF 1.4 blending operations which are supported for all output devices.)
Overprinting is not allowed for devices with an additive process color model. With files that use overprinting, the
appearance of the resulting image can differ between devices which produce RGB output versus devices which produce
CMYK output. Ghostscript automatically overprints (if needed) when the output device uses a subtractive process color
model. For example, if the file is using overprinting, differences can be seen in the appearance of the output from the
tiff24nc and tiff32nc devices which use an RGB and a CMYK process color models.

Most of the Ghostscript output devices do not have file formats which support spot colors. Instead spot colors are
converted using the tint transform function contained within the color space definition.. However there are several
devices which have support for spot colors. The PSD format (Adobe Photoshop) produced by the psdcmyk device
contains both the raster data plus an equivalent CMYK color for each spot color. This allows Photoshop to simulate the
appearance of the spot colors. The display device (MS Windows, OS/2, gtk+) can be used with different color models:
Gray, RGB, CMYK only, or CMYK plus spot colors (separation). The display device, when using its CMYK plus spot
color (separation) mode, also uses an equivalent CM YK color to simulate the appearance of the spot color. The ziffsep
device creates output files for each separation (CMYK and any spot colors present). It also creates a composite CMYK
file using an equivalent CMYK color to simulate the appearance of spot colors. The xcfcmyk device creates output
files with spot colors placed in separate alpha channels. (The XCF file format does not currently directly support spot
colors.)

Overprinting with spot colors is not allowed if the tint transform function is being used to convert spot colors. Thus if
spot colors are used with overprinting, then the appearance of the result can differ between output devices. One result
would be obtained with a CM YK only device and another would be obtained with a CMYK plus spot color device. In a
worst case situation where a file has overprinting with both process (CMYK) and spot colors, it is possible to get three
different appearances for the same input file using the #iff24nc (RGB), tiff32nc (CMYK), and ziffsep (CMYK plus spot
colors) devices.

Note: In Adobe Acrobat, viewing of the effects of overprinting is enabled by the ‘Overprint Preview’ item in the
‘Advanced’ menu. This feature is not available in the free Acrobat Reader. The free Acrobat Reader also uses the tint
transform functions to convert spot colors to the appropriate alternate color space.

56 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

6.7 How Ghostscript finds files

When looking for initialization files (gs_*.ps, pdf_%*.ps), font files, the Fontmap file, files named on the command
line, and resource files, Ghostscript first tests whether the file name specifies an absolute path.

6.7.1 Testing a file name for an absolute path

System Does the name ...

Unix Begin with / ?

MS Windows Have : as its second character, or begin with /, \, or
//servername/share/ ?

VMS Contain a node, device, or root specification?

If the test succeeds, Ghostscript tries to open the file using the name given. Otherwise it tries directories in this order:
1. The current directory if enabled by the -P switch.
2. The directories specified by -/ switches in the command line, if any.
3. The directories specified by the GS_LIB environment variable, if any.
4

. If built with COMPILE_INITS=1 (currently the default build) the files in the %rom%Resource/ and
%rom%iccprofiles/ directories are built into the executable.

5. The directories specified by the GS_LIB_DEFAULT macro (if any) in the makefile when this executable was built.

GS_LIB_DEFAULT, GS_LIB, and the -I parameter may specify either a single directory or a list of directories separated
by a character appropriate for the operating system (’:” on Unix systems, “,” on VMS systems, and “;” on MS
Windows systems). By default, Ghostscript no longer searches the current directory first but provides -P switch for a

degree of backward compatibility.

Note that Ghostscript does not use this file searching algorithm for the run or file operators: for these operators, it
simply opens the file with the name given. To run a file using the searching algorithm, use runlibfile instead of
run.

6.7.2 Finding PostScript Level 2 resources

Adobe specifies that resources are installed in a single directory. Ghostscript instead maintains a list of resource direc-
tories, and uses an extended method for finding resource files.

The search for a resource file depends on whether the value of the system parameter GenericResourceDir specifies
an absolute path. The user may set it as explained in resource related parameters.

If the user doesn’t set the system parameter GenericResourceDir, or use the -sGenericResourceDir= command
line option, Ghostscript creates a default value for it by looking on the directory paths explained in How Ghostscript
finds files, excluding the current directory. The first path with Resource in it is used, including any prefix up to the path
separator character following the string Resource. For example, when COMPILE_INITS=1 (the current default build), if
the first path is %rom%Resource/Init/, then the GenericResourceDir systemparam will be set to %rom%Resource/
by default.

If the value of the system parameter GenericResourceDir is an absolute path (the default), Ghostscript assumes a
single resource directory. It concatenates:

1. The value of the system parameter GenericResourceDir.

2. The name of the resource category (for instance, CMap).

6.7. How Ghostscript finds files 57

Ghostscript Documentation, Release 10.03.1

3. The name of the resource instance (for instance, Identity-H).

If the value of the system parameter GenericResourceDir is not an absolute path, Ghostscript assumes multiple resource
directories. In this case it concatenates:

1. A directory listed in the section How Ghostscript finds files, except the current directory.
2. The value of the system parameter GenericResourceDir.

3. The name of the resource category (for instance, CMap).

4. The name of the resource instance (for instance, Identity-H).

Due to possible variety of the part 1, the first successful combination is used. For example, if the value of the sys-
tem parameter GenericResourceDir is the string ../Resource/ (or its equivalent in the file path syntax of the
underlying platform), Ghostscript searches for ../Resource/CMap/Identity-H from all directories listed in How
Ghostscript finds files. So in this example, if the user on a Windows platform specifies the command line option
-I.;../9s/1lib;c:/gs8.50/1ib, Ghostscript searches for . ./gs/Resource/CMap/Identity-H and then for c:/
gs8.50/Resource/CMap/Identity-H.

To get a proper platform dependent syntax Ghostscript inserts the value of the system parameter
GenericResourcePathSep (initially “/” on Unix and Windows, “:” on MacOS, “.” or “]” on OpenVMS).
The string . . /Resource is replaced with a platform dependent equivalent.

In the case of multiple resource directories, the default ResourceFileName procedure retrieves either a path to the
first avaliable resource, or if the resource is not available it returns a path starting with GenericResourceDir. Con-
sequently Postscript installers of Postscript resources will overwrite an existing resource or add a new one to the first
resource directory.

To look up fonts, after exhausting the search method described in the next section, it concatenates together:
1. the value of the system parameter FontResourceDir (initially /Resource/Font/).

2. the name of the resource font (for instance, Times-Roman).

Note: Even although the system parameters are named “somethingDir”, they are not just plain directory names: they
have “/” on the end, so that they can be concatenated with the category name or font name.

6.7.3 Font lookup

Ghostscript has a slightly different way to find the file containing a font with a given name. This rule uses not only the
search path defined by -I, GS_LIB, and GS_LIB_DEFAULT as described above, but also the directory that is the value
of the FontResourceDir system parameter, and an additional list of directories that is the value of the GS_FONTPATH
environment variable (or the value provided with the -sFONTPATH= switch, if present).

At startup time, Ghostscript reads in the Fontmap files in every directory on the search path (or in the list provided
with the -sFONTMAP= switch, if present): these files are catalogs of fonts and the files that contain them. (See the
documentation of fonts for details.) Then, when Ghostscript needs to find a font that isn’t already loaded into memory,
it goes through a series of steps.

1. First, it looks up the font name in the combined Fontmaps. If there is an entry for the desired font name, and the
file named in the entry can be found in some directory on the general search path (defined by -I, GS_LIB, and
GS_LIB_DEFAULT), and the file is loaded successfully, and loading it defines a font of the desired name, that is
the end of the process.

2. If this process fails at any step, Ghostscript looks for a file whose name is the concatenation of the value of the
FontResourceDir system parameter and the font name, with no extension. If such a file exists, can be loaded,
and defines a font of the desired name, that again is the end. The value of FontResourceDir is normally

58 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

the string /Resource/Font/, but it can be changed with the setsystemparams operator: see the PostScript

Language Reference Manual for details.

3. If that fails, Ghostscript then looks for a file on the general search path whose name is the desired font name,
with no extension. If such a file exists, can be loaded, and defines a font of the desired name, that again is the

end.

4. If that too fails, Ghostscript looks at the GS_FONTPATH environment variable (or the value provided with the
-sFONTPATH= switch, if present), which is also a list of directories. It goes to the first directory on the list, and
it’s descendants, looking for all files that appear to contain PostScript fonts (also Truetype fonts); it then adds all
those files and fonts to the combined Fontmaps, and starts over.

5. If scanning the first FONTPATH directory doesn’t produce a file that provides the desired font, it adds the next
directory on the FONTPATH list, and so on until either the font is defined successfully or the list is exhausted.

6. Finally, if all else fails, it will try to find a substitute for the font from among the standard 35 fonts.

Note: CID fonts (e.g. Chinese, Japanese and Korean) are found using a different method.

Differences between search path and font path

Search path

Font path

-I switch

-sFONTPATH= switch

GS_LIB and GS_LIB_DEFAULT environment variables

GS_FONTPATH environment variable

Consulted first

Consulted only if search path and FontResourceDir
don’t provide the file.

Font-name-to-file-name mapping given in Fontmap
files;

aliases are possible, and there need not be any relation
between the font name in the Fontmap and the FontName
in the file.

Font-name-to-file-name mapping is implicit — the
FontName in the file is used.
Aliases are not possible.

Only fonts and files named in Fontmap are used.

Every Type 1 font file in each directory is available;

if TrueType fonts are supported (the ttfont.dev fea-
ture was included

when the executable was built), they are also available.

If you are using one of the following types of computer, you may wish to set the environment variable GS_FONTPATH to
the value indicated so that Ghostscript will automatically acquire all the installed Type 1 (and, if supported, TrueType)

fonts (but see below for notes on systems marked with “*”):

6.7. How Ghostscript finds files

59

Ghostscript Documentation, Release 10.03.1

Suggested GS_FONTPATH for different systems

System type GS_FONTPATH

Digital Unix fusr/lib/X11/fonts/Typel Adobe
Ultrix /ust/lib/DPS/outline/decwin

HP-UX 9 /usr/lib/X11/fonts/typel.st/typefaces
IBM AIX /ust/lpp/DPS/fonts/outlines

fust/lpp/X11/1ib/X11/fonts/Typel
fust/lpp/X11/1ib/X1 1/fonts/Type 1/DPS

NeXT /NextLibrary/Fonts/outline

SGI IRIX * /ust/lib/DPS/outline/base
/ust/lib/X11/fonts/Typel

SunOS 4.x (NeWSprint only) newsprint_2.5/SUNWsteNP/reloc/$BASEDIR/NeWSprint/
small_openwin/lib/fonts

SunOS 4.x ** /usr/openwin/lib/X11/fonts/Typel/outline

Solaris 2.x ** /usr/openwin/lib/X11/fonts/Typel/outline

VMS SYS$COMMON:[SYSFONT.XDPS.OUTLINE]

*% On SGI IRIX systems, you must use Fontmap.SGI in place of Fontmap or Fontmap .GS, because otherwise the
entries in Fontmap will take precedence over the fonts in the FONTPATH directories.

*# On Solaris systems simply setting GS_FONTPATH or using -sFONTPATH= may not work, because for some reason
some versions of Ghostscript can’t seem to find any of the Typel fonts in /usr/openwin/lib/X11/fonts/Typel/
outline. (It says: “15 files, 15 scanned, O new fonts”. We think this problem has been fixed in Ghostscript version
6.0, but we aren’t sure because we’ve never been able to reproduce it.) See Fontmap.Sol instead. Also, on Solaris
2.x it’s probably not worth your while to add Sun’s fonts to your font path and Fontmap. The fonts Sun distributes on
Solaris 2.x in the directories: /usr/openwin/lib/X11/fonts/Typel & /usr/openwin/lib/X11/fonts/Typel/
outline are already represented among the ones distributed as part of Ghostscript; and on some test files, Sun’s fonts
have been shown to cause incorrect displays with Ghostscript.

These paths may not be exactly right for your installation; if the indicated directory doesn’t contain files whose names
are familiar font names like Courier and Helvetica, you may wish to ask your system administrator where to find these
fonts.

Adobe Acrobat comes with a set of fourteen Type 1 fonts, on Unix typically in a directory called /Acrobat3/Fonts.
There is no particular reason to use these instead of the corresponding fonts in the Ghostscript distribution (which are
of just as good quality), except to save about a megabyte of disk space, but the installation documentation explains how
to do it on Unix.

6.7.4 CID fonts

CID fonts are PostScript resources containing a large number of glyphs (e.g. glyphs for Far East languages, Chinese,
Japanese and Korean). Please refer to the PostScript Language Reference, third edition, for details.

CID font resources are a different kind of PostScript resource from fonts. In particular, they cannot be used as regular
fonts. CID font resources must first be combined with a CMap resource, which defines specific codes for glyphs, before
it can be used as a font. This allows the reuse of a collection of glyphs with different encodings.

The simplest method to request a font composed of a CID font resource and a CMap resource in a PostScript document
is:

/CIDFont-CMap findfont

60 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

where CIDFont is a name of any CID font resource, and CMap is a name of a CMap resource designed for the same char-
acter collection. The interpreter will compose the font automatically from the specified CID font and CMap resources.
Another method is possible using the composefont operator.

CID fonts must be placed in the /Resource/CIDFont/ directory. They are not found using Font lookup on the search
path or font path.

6.7.5 CID font substitution

Automatic CIDFont Substitution

In general, it is highly recommended that CIDFonts used in the creation of PDF jobs should be embedded or available
to Ghostscript as CIDFont resources, this ensures that the character set, and typeface style are as intended by the author.

In cases where the original CIDFont is not available, the next best option is to provide Ghostscript with a mapping to
a suitable alternative CIDFont - see below for details on how this is achieved. However, Ghostscript does provide the
ability to use a “fall back” CIDFont substitute. As shipped, this uses the DroidSansFallback.ttf font. This font contains
a large number of glyphs covering several languages, but it is not comprehensive. There is, therefore, a chance that
glyphs may be wrong, or missing in the output when this fallback is used.

Internally, the font is referenced as CIDFont resource called CIDFallBack, thus a different fallback from
DroidSansFallback. ttf can be specified adding a mapping to your cidfmap file (see below for details) to map the
name “CIDFallBack” as you prefer. For CIDFallBack the mapping must be a TrueType font or TrueType collection,
it cannot be a Postscript CIDFont file.

As with any font containing large numbers of glyphs, DroidSansFallback. ttf is quite large (~3.5Mb at the of
writing). If this is space you cannot afford in your use of Ghostscript, you can simply delete the file from: Resource/
CIDFSubst/DroidSansFallback. ttf. The build system will cope with the file being removed, and the initialization
code will avoid adding the internal fall back mapping if the file is missing.

If DroidSansFallback.ttf is removed, and no other CIDFallBack mapping is supplied, the final “fall back” is to
use a “dumb” bullet CIDFont, called ArtifexBullet. As the name suggests, this will result in all the glyphs from a
missing CIDFont being replaced with a simple bullet point.

This type of generic fall back CIDFont substitution can be very useful for viewing and proofing jobs, but may not
be appropriate for a “production” workflow, where it is expected that only the original font should be used. For
this situation, you can supply Ghostscript with the command line option: -dPDFNOCIDFALLBACK. By combining
-dPDFNOCIDFALLBACK with ~-dPDFSTOPONERROR a production workflow can force a PDF with missing CIDFonts
to error, and avoid realising a CIDFont was missing only after printing.

The directory in which the fallback TrueType font or collection can be specified by the command line parameter
-sCIDFSubstPath="path/to/TTF", or with the environment variable CIDFSUBSTPATH. The file name of the substi-
tute TrueType font can be specified using the command line parameter -sCIDFSubstFont="TTF file name" or the
environment variable CIDFSUBSTFONT.

Explicit CIDFont Substitution

Substitution of CID font resources is controlled, by default, by the Ghostscript configuration file Resource/Init/
cidfmap, which defines a CID font resource map.

The file forms a table of records, each of which should use one of three formats, explained below. Users may modify
Resource/Init/cidfmap to configure Ghostscript for a specific need. Note that the default Ghostscript build includes
such configuration and resource files in a rom file system built into the executable. So, to ensure your changes have
an effect, you should do one of the following: rebuild the executable; use the “-I” command line option to add the
directory containing your modified file to Ghostscript’s search path; or, finally, build Ghostscript to use disk based
resources.

6.7. How Ghostscript finds files 61

Ghostscript Documentation, Release 10.03.1

Format 1

To substitute a CID font resource with another CID font resource, add a record like this:

/Substituted /Original ;

where Substitutedis a name of CID font resource being used by a document, and Original is a name of an available
CID font resource. Please pay attention that both them must be designed for same character collection. In other words,
you cannot substitute a Japanese CID font resource with a Korean CID font resource, etc. CMap resource names must
not appear in 1ib/cidfmap. The trailing semicolon and the space before it are both required.

Format 2

To substitute (emulate) a CID font resource with a TrueType font file, add a record like this:

/Substituted << keys&values >> ;

Where keys&values are explained in the table below.

Key Type Description

/Path string A path to a TrueType font file.

This must be an absolute path. If using -dSAFER, the directory containing the
font file must be on one of the permitted paths.

/FileType name Must be /TrueType.

/SubfontID integer (optional) Index of the font in font collection, such as TTC.

This is ignored if Path doesn’t specify a collection. The first font in a collection
is 0. Default value is 0.

/CSI array of 2 or 3 | (required) Information for building CIDSystemInfo.
elements If the array consists of 2 elements, the first element is a string,
which specifies Ordering; the second element is a number, which specifies
Supplement.

If the array consists of 3 elements, the first element is a string,
which specifies Registry; the second element is a string,
which specifies Ordering; the third element is a number,
which specifies Supplement.

Currently only CIDFontType 2 can be emulated with a TrueType font. The TrueType font must contain enough char-
acters to cover an Adobe character collection, which is specified in Ordering and used in documents.

Format 3

113

To point Ghostscript at a specific CIDFont file outside it’s “normal” resource search path :

/CIDName (path/to/cid/font/file) ;

where CIDName is a name of CID font resource being used by a document, and path/to/cid/font/file is the path
to the Postscript CIDFont file, including the file name. NOTE: the CIDFont file, when executed by the Postscript
interpreter, must result in a CIDFont resource being defined whose CIDFontName matches the “CIDName” key for
the current record. L.E. an entry with the key /PingHei-Bold must reference a file which creates a CIDFont resource

62 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

called “PingHei-Bold”. To substitute a file based CIDFont for a differently named CIDFont, use formats 1 and 3 in
combination (the order of the entries is not important).

The trailing semicolon and the space before it are both required.

Examples

Format 1

/Ryumin-Medium /ShinGo-Bold ;

/Ryumin-Light /MS-Mincho ;

Format 2:

/Batang << /FileType /TrueType /Path (C:/WINDOWS/fonts/batang.ttc) /SubfontID 0 /CSI.
—[(Roreal) 3] >> ;

/Gulim << /FileType /TrueType /Path (C:/WINDOWS/fonts/gulim.ttc) /SubfontID ® /CSI.
—~[(Koreal) 3] >> ;

/Dotum << /FileType /TrueType /Path (C:/WINDOWS/fonts/gulim.ttc) /SubfontID 2 /CSI.

< [(Koreal) 3] >> ;

Format 1 & 2

/SimSun << /FileType /TrueType /Path (C:/WINDOWS/fonts/simsun.ttc) /SubfontID ® /CSI.
~[(GB1) 2] >> ;

/SimHei << /FileType /TrueType /Path (C:/WINDOWS/fonts/simhei.ttf) /SubfontID ® /CSI.
~[(GB1) 2] >> ;

/STSong-Light /SimSun ;

/STHeiti-Regular /SimHei ;

Format 3:

/PMingLiU (/usr/local/share/font/cidfont/PMingLiU.cid) ;

Format 1 & 3

/Ryumin-Light /PMingLiU ;
/PMingLiU (/usr/local/share/font/cidfont/PMingLiU.cid) ;

The win32 installer of recent version of Ghostscript has a checkbox for “Use Windows TrueType fonts for Chinese,
Japanese and Korean” to optionally update 1ib/cidfmap with the common CJK fonts provided by Microsoft products.
The script can also be run separately (e.g. against a network drive with windows CJK fonts):

gswin32c -q -dBATCH -sFONTDIR=c:/windows/fonts -sCIDFMAP=1ib/cidfmap lib/mkcidfm.ps

Note that the font file path uses Postscript syntax. Because of this, backslashes in the paths must be represented as a
double backslash.

This can complicate substitutions for fonts with non-Roman names. For example, if a PDF file asks for a font with
the name /#821#82r#83S#83V#83b#83N. This cannot be used directly in a cidfmap file because the #xx notation in
names is a PDF-only encoding. Instead, try something like:

<82C68272835383568362834E>cvn << /Path (C:/WINDOWS/Fonts/msmincho.ttc) /FileType /
—TrueType /SubfontID 0 /CSI [(Japanl) 3] >> ;

Where <82C68272835383568362834E> is the same byte sequence converted to a hex string. This lets you specify a
name using any sequence of bytes through the encodings available for Postscript strings.

6.7. How Ghostscript finds files 63

Ghostscript Documentation, Release 10.03.1

Note that loading truetype fonts directly from /Resources/CIDFont is no longer supported. There is no reliable way
to generate a character ordering for truetype fonts. The 7.0x versions of Ghostscript supported this by assuming a
Japanese character ordering. This is replaced in the 8.0x and later releases with the more general cidfmap mechanism.

The PDF specification requires CID font files to be embedded, however some documents omit them. As a workaround
the PDF interpreter applies an additional substitution method when a requested CID font resource is not embedded
and it is not available. It takes values of the keys Registry and Ordering from the CIDFontSystem dictionary, and
concatenates them with a dash inserted. For example, if a PDF CID font resource specifies:

/CIDSystemInfo << /Registry (Adobe) /Ordering (CNS1) /Supplement 1 >>

the generated subsitituite name is Adobe-CNS1. The latter may look some confusing for a font name, but we keep
it for compatibility with older Ghostscript versions, which do so due to a historical reason. Add a proper record to
lib/cidfmap to provide it.

Please note that when a PDF font resource specifies:

/Registry (Adobe) /Ordering (Identity)

there is no way to determine the language properly. If the CID font file is not embedded, the Adobe-Identity record
depends on the document and a correct record isn’t possible when a document refers to multiple Far East languages. In
the latter case add individual records for specific CID font names used in the document.

Consequently, if you want to handle any PDF document with non-embedded CID fonts (which isn’t a correct PDF),
you need to create a suitable 1ib/cidfmap by hand, possibly a specific one for each document.

6.7.6 Using Unicode True Type fonts

Ghostscript can make use of Truetype fonts with a Unicode character set. To do so, you should generate a (NOTE: non-
standard!) Postscript or PDF job where the relevant text is encoded as UTF-16. Ghostscript may be used for converting
such jobs to other formats (Postscript, PDF, PXL etc). The resulting output will be compliant with the spec (unlike the
input).

To render an UTF-16 encoded text, one must do the following:

* Provide a True Type font with Unicode Encoding. It must have a cmap table with platformID equals to 3
(Windows), and SpecificID eqials to 1 (Unicode).

* Describe the font in Resource/Init/cidfmap with special values for the CST key : [(Artifex) (Unicode)
0].

¢ In the PS or PDF job combine the font with one of CMap Identity-UTF16-H (for the horizontal writing
mode) or Identity-UTF16-V (for the vertical writing mode). Those CMaps are distributed with Ghostscript in
Resource/CMap.

Please note that /Registry (Adobe) /Ordering (Identity) won’t properly work for Unicode documents, espe-
cially for the searchability feature (see CID font substitution).

64 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

6.7.7 Temporary files

Where Ghostscript puts temporary files

Platform Filename Location

MS Windows and OpenVMS | _temp_XX.XXX | Current directory
0S/2 gsXXXXXX Current directory
Unix gs_ XXXXX /tmp

You can change in which directory Ghostscript creates temporary files by setting the TMPDIR or TEMP environment
variable to the name of the directory you want used. Ghostscript currently doesn’t do a very good job of deleting
temporary files if it exits because of an error; you may have to delete them manually from time to time.

6.8 Notes on specific platforms

6.8.1 Word size (32 or 64 bits)

The original PostScript language specification, while not stating a specific word size, defines ‘typical’ limits which
make it clear that it was intended to run as a 32-bit environment. Ghostscript was originally coded that way, and the
heritage remains within the code base.

Because the Ghostscript PDF interpreter is currently written in PostScript, it proved necessary to add support for 64-bit
integers so that we could process PDF files which exceed 2GB in size. This is the only real purpose in adding support
for large integers, however since that time, we have made some efforts to allow for the use of 64-bit words; in particular
the use of integers, but also lifting the 64K limit on strings and arrays, among other areas.

However this is, obviously, dependent on the operating system and compiler support available. Not all builds of
Ghostscript will support 64-bit integers, though some 32-bit builds (eg Windows) will.

Even when the build supports 64-bit words, you should be aware that there are areas of Ghostscript which do not
support 64-bit values. Sometimes these are dependent on the build and other times they are inherent in the architecture
of Ghostscript (the graphics library does not support 64-bit co-ordinates in device space for example, and most likely
never will).

Note: The extended support for 64-bit word size can be disabled by executing ‘true .setcpsimode’, This is important
for checking the output of the Quality Logic test suite (and possibly other test suites) as the tests make assumptions
about the sizes of integers (amongst other things). You can run /ghostpdl/Resource/Init/gs_cet.ps to change
Ghostscript’s behaviour so that it matches the observed behaviour of Adobe CPSI interpreters.

6.8.2 Unix

The Ghostscript distribution includes some Unix shell scripts to use with Ghostscript in different environments. These
are all user-contributed code, so if you have questions, please contact the user identified in the file, not Artifex Software.

6.8. Notes on specific platforms 65

Ghostscript Documentation, Release 10.03.1

pv.sh

Preview a specified page of a dvi file in an X window

sysvlp.sh

System V 3.2 lp interface for parallel printer

pj-gs.sh

Printing on an H-P PaintJet under HP-UX

unix-lpr.sh

Queue filter for 1pr under Unix; its documentation is intended for system administrators

Iprsetup.sh

Setup for unix-1pr.sh

6.8.3 VMS

To be able to specify switches and file names when invoking the interpreter, define gs as a foreign command:

$ gs == "$disk:[directory]gs.exe"

where the “disk” and “directory” specify where the Ghostscript executable is located. For instance:

$ gs == "$dual:[ghostscript]gs.exe"

On VMS systems, the last character of each “directory” name indicates what sort of entity the “directory” refers to. If

[T}

the “directory” name ends with a colon “:”, it is taken to refer to a logical device, for instance:

$ define ghostscript_device dual:[ghostscript_510]

$ define gs_lib ghostscript_device:

If the “directory” name ends with a closing square bracket “]”, it is taken to refer to a real directory, for instance

$ define gs_lib dual:[ghostscript]

Defining the logical GS_LIB:

$ define gs_lib disk:[directory]

allows Ghostscript to find its initialization files in the Ghostscript directory even if that’s not where the executable
resides.

Although VMS DCL itself converts unquoted parameters to upper case, C programs such as Ghostscript receive their
parameters through the C runtime library, which forces all unquoted command-line parameters to lower case. That is,
with the command:

66 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

$ gs -Isys$login:

Ghostscript sees the switch as -isys$login, which doesn’t work. To preserve the case of switches, quote them like
this:

$ gs "-Isys$login:"

If you write printer output to a file with -sOutputFile= and then want to print the file later, use "PRINT/PASSALL".

PDF files (or PostScript files that use the setfileposition operator) must be “stream LF” type files to work properly
on VMS systems. (Note: This definitely matters if Ghostscript was compiled with DEC C; we are not sure of the
situation if you use gcc.) Because of this, if you transfer files by FTP, you probably need to do one of these two things
after the transfer:

e If the FTP transfer was in text (ASCII) mode:

$ convert/fdl=streamlf.fdl input-file output-file

where the contents of the file STREAMLF . FDL are:
FILE
ORGANIZATION sequential
RECORD
BLOCK_SPAN yes
CARRIAGE_CONTROL carriage_return
FORMAT stream_If

e If the FTP transfer was in binary mode:

§ set file/attribute=(rfm:stmlf)

Using X Windows on VMS

If you are using on an X Windows display, you can set it up with the node name and network transport, for instance:

$ set display/create/node="doof.city.com"/transport=tcpip

and then run Ghostscript by typing gs at the command line.

6.8.4 MS Windows

The name of the Ghostscript command line executable on MS Windows is gswin32c/gswin64c so use this instead of
the plain ‘gs’ in the quickstart examples.

To run the batch files in the Ghostscript lib directory, you must add gs\bin and gs\1lib to the PATH, where gs is the
top-level Ghostscript directory.

When passing options to Ghostscript through a batch file wrapper such as ps2pdf.bat you need to substitute ‘#’ for
‘=" as the separator between options and their arguments. For example:

ps2pdf -sPAPERSIZE#a4 file.ps file.pdf

6.8. Notes on specific platforms 67

Ghostscript Documentation, Release 10.03.1

Ghostscript treats ‘#° the same internally, and the ‘=" is mangled by the command shell.

There is also an older version for MS Windows called just gswin32 that provides its own window for the interactive
postscript prompt. The executable gswin32c/gswin64c is usually the better option since it uses the native command
prompt window.

For printer devices, the default output is the default printer. This can be modified as follows:

-sOutputFile="%printer%printer name"

Output to the named printer.

-sOutputFile="%printer%HP DeskJet 500".

6.8.5 MS-DOS

If your printer is named “HP DeskJet 500” then you would use

Note: Ghostscript is no longer supported on MS-DOS.

Invoking Ghostscript from the command prompt in Windows is supported by the Windows executable described above.

6.8.6 X Windows

Ghostscript looks for the following resources under the program name ghostscript and class name Ghostscript;
the ones marked “**” are calculated from display metrics:

X Windows resources

Name Class Default
background Background white
foreground Foreground black
borderColor BorderColor black
borderWidth BorderWidth 1
geometry Geometry NULL
xResolution Resolution o
yResolution Resolution o
useExternalFonts UseExternalFonts true
useScalableFonts UseScalableFonts true
logExternalFonts LogExternalFonts false
externalFontTolerance | ExternalFontTolerance | 10.0
palette Palette Color
maxGrayRamp MaxGrayRamp 128
maxRGBRamp MaxRGBRamp 5
maxDynamicColors MaxDynamicColors 256
useBackingPixmap UseBackingPixmap true
useXPutImage UseXPutlmage true
useXSetTile UseXSetTile true

68

Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

X resources

To set X resources, put them in a file (such as ~/.Xdefaults on Unix) in a form like this:

Ghostscript*geometry: 595x842-0+0
Ghostscript*xResolution: | 72
Ghostscript*yResolution: | 72

Then merge these resources into the X server’s resource database:

xrdb -merge ~/.Xdefaults

* Ghostscript doesn’t look at the default system background and foreground colors; if you want to change the
background or foreground color, you must set them explicitly for Ghostscript. This is a deliberate choice, so that
PostScript documents will display correctly by default — with white as white and black as black — even if text
windows use other colors.

* The geometry resource affects only window placement.
» Resolution is expressed in pixels per inch (1 inch = 25.4mm).

» The font tolerance gives the largest acceptable difference in height of the screen font, expressed as a percentage
of the height of the desired font.

» The palette resource can be used to restrict Ghostscript to using a grayscale or monochrome palette.

maxRGBRamp and maxGrayRamp control the maximum number of colors that Ghostscript allocates ahead of time for
the dither cube (ramp). Ghostscript never preallocates more than half the cells in a colormap. maxDynamicColors
controls the maximum number of colors that Ghostscript will allocate dynamically in the colormap.

Working around bugs in X servers

The “use. ..” resources exist primarily to work around bugs in X servers.

¢ Old versions of DEC’s X server (DECwindows) have bugs that require setting useXPutImage or useXSetTile
to false.

* Some servers do not implement backing pixmaps properly, or do not have enough memory for them. If you get
strange behavior or “out of memory” messages, try setting useBackingPixmap to false.

* Some servers do not implement tiling properly. This appears as broad bands of color where dither patterns should
appear. If this happens, try setting useXSetTile to false.

» Some servers do not implement bitmap or pixmap displaying properly. This may appear as white or black rectan-
gles where characters should appear; or characters may appear in “inverse video” (for instance, white on a black
rectangle rather than black on white). If this happens, try setting useXPutImage to false.

6.8. Notes on specific platforms 69

Ghostscript Documentation, Release 10.03.1

X device parameters
In addition to the device parameters recognized by all devices, Ghostscript’s X driver provides parameters
to adjust its performance. Users will rarely need to modify these. Note that these are parameters to be set

with the -d switch in the command line (e.g., ~-dMaxBitmap=10000000), not resources to be defined in
the ~/.Xdefaults file.

AlwaysUpdate <boolean>

If true, the driver updates the screen after each primitive drawing operation; if false (the default), the
driver uses an intelligent buffered updating algorithm.

MaxBitmap <integer>

If the amount of memory required to hold the pixmap for the window is no more than the value of
MaxBitmap, the driver will draw to a pixmap in Ghostscript’s address space (called a “client-side pixmap”)
and will copy it to the screen from time to time; if the amount of memory required for the pixmap exceeds
the value of MaxBitmap, the driver will draw to a server pixmap. Using a client-side pixmap usually pro-
vides better performance — for bitmap images, possibly much better performance — but since it may require
quite a lot of RAM (e.g., about 2.2 Mb for a 24-bit 1024x768 window), the default value of MaxBitmap
is 0.

MaxTempPixmap, MaxTempImage <integer>

These control various aspects of the driver’s buffering behavior. For details, please consult the source file
gdevx.h.

SCO Unix

Because of bugs in the SCO Unix kernel, Ghostscript will not work if you select direct screen output and also allow it
to write messages on the console. If you are using direct screen output, redirect Ghostscript’s terminal output to a file.

6.9 Command line options

Unless otherwise noted, these switches can be used on all platforms.

6.9.1 General switches

Input control

@filename

Causes Ghostscript to read filename and treat its contents the same as the command line. (This was in-
tended primarily for getting around DOS’s 128-character limit on the length of a command line.) Switches
or file names in the file may be separated by any amount of white space (space, tab, line break); there is
no limit on the size of the file.

70 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

— filename arg1 ...
-+ filename arg1 ...

Takes the next argument as a file name as usual, but takes all remaining arguments (even if they have the
syntactic form of switches) and defines the name ARGUMENTS in userdict (not systemdict) as an array of
those strings, before running the file. When Ghostscript finishes executing the file, it exits back to the shell.

-@ filename arg1 ...

Does the same thing as — and -+, but expands @filename arguments.

These are not really switches: they tell Ghostscript to read from standard input, which is coming from a
file or a pipe, with or without buffering. On some systems, Ghostscript may read the input one character
at a time, which is useful for programs such as ghostview that generate input for Ghostscript dynamically
and watch for some response, but can slow processing. If performance is significantly slower than with a
named file, try ‘-_’ which always reads the input in blocks. However, ‘-’ is equivalent on most systems.

-c token ...
-c string ...

Interprets arguments as PostScript code up to the next argument that begins with “-” followed by a non-
digit, or with “@”. For example, if the file quit.ps contains just the word “quit”, then -c quit on the
command line is equivalent to quit.ps there. Each argument must be valid PostScript, either individual
tokens as defined by the token operator, or a string containing valid PostScript.

Because Ghostscript must initialize the PostScript environment before executing the commands specified
by this option it should be specified after other setup options. Specifically this option ‘bind’s all operations
and sets the systemdict to readonly.

Interprets following non-switch arguments as file names to be executed using the normal run command.
Since this is the default behavior, - £ is useful only for terminating the list of tokens for the -c switch.

6.9. Command line options 71

Ghostscript Documentation, Release 10.03.1

-f filename

Execute the given file, even if its name begins with a “-” or “@”".

File searching

Note that by “library files” here we mean all the files identified using the search rule under “How Ghostscript finds
Jiles” above: Ghostscript’s own initialization files, fonts, and files named on the command line.

-l directories

Adds the designated list of directories at the head of the search path for library files.

Makes Ghostscript look first in the current directory for library files.

Makes Ghostscript not look first in the current directory for library files (unless, of course, the first explicitly
supplied directory is “.”). This is now the default.

Setting parameters

-D name, -d name

Define a name in systemdict with value=true.

-D name=token, -d name=token

Define a name in systemdict with the given value. The value must be a valid PostScript token (as defined
by the token operator). If the token is a non-literal name, it must be true, false, or null. It is recommeded
that this is used only for simple values — use -c (above) for complex values such as procedures, arrays or
dictionaries.

Note that these values are defined before other names in systemdict, so any name that that conflicts with
one usually in systemdict will be replaced by the normal definition during the interpreter initialization.

-S name=string, -s name=string

Define a name in systemdict with a given string as value. This is different from -d. For example, -dXYZ=35
on the command line is equivalent to the program fragment:

/XYZ 35 def

whereas -sXYZ=35 is equivalent to:

72 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

/XYZ (35) def

-p name=string

Define a name in systemdict with the parsed version of the given string as value. The string takes a pa-
rameter definition in (something very close to) postscript format. This allows more complex structures to
be passed in than is possible with -d or -s. For example:

-pFoo="<< /Bar[l 2 3]/Baz 0.1 /Whizz (string) /Bang <0123> >>"

This means that -p can do the job of both -d and -s. For example:

-dDownScaleFactor=3

can be equivalently performed by:

-pDownScaleFactor=3

and:

-SPAPERSIZE=letter

can be equivalently performed by:

-pPAPERSIZE="(letter)"

Note: There are some ‘special’ values that should be set using -s, not -p, such as DEVICE and Defaul tGrayProfile.
Broadly, only use -p if you cannot set what you want using -s or -d.

Also, internally, after setting an parameter with -p we perform an initgraphics operation. This is required to allow
changes in parameters such as HiResolution to take effect. This means that attempting to use -p other than at the
start of a page is liable to give unexpected results.

=u name

Un-define a name, cancelling -d or -s.

Note that the initialization file gs_init.ps makes systemdict read-only, so the values of names defined with
-D, -d, -S, and -s cannot be changed — although, of course, they can be superseded by definitions in
userdict or other dictionaries. However, device parameters set this way (PageSize, Margins, etc.) are not
read-only, and can be changed by code in PostScript files.

6.9. Command line options 73

Ghostscript Documentation, Release 10.03.1

-g humber1 x number2

Equivalent to ~-dDEVICEWIDTH=numberl and -dDEVICEHEIGHT=number?2, specifying the device width
and height in pixels for the benefit of devices such as X11 windows and VESA displays that require (or
allow) you to specify width and height. Note that this causes documents of other sizes to be clipped, not
scaled: see ~-dFIXEDMEDIA below.

-r number (same as -r number x number)
-r number1 x number2

Equivalent to ~-dDEVICEXRESOLUTION=numberl and -dDEVICEYRESOLUTION=number2, specifying the
device horizontal and vertical resolution in pixels per inch for the benefit of devices such as printers that
support multiple X and Y resolutions.

Suppress messages
-q

Quiet startup: suppress normal startup messages, and also do the equivalent of -dQUIET .

6.9.2 Parameter switches (-d and -s)

As noted above, -d and -s define initial values for PostScript names. Some of these names are parameters
that control the interpreter or the graphics engine. You can also use -d or -s to define a value for any
device parameter of the initial device (the one defined with -sDEVICE=, or the default device if this switch
is not used). For example, since the ppmraw device has a numeric GrayValues parameter that controls the
number of bits per component, -sDEVICE=ppmraw -dGrayValues=16 will make this the default device
and set the number of bits per component to 4 (log2(16)).

Rendering parameters

-dCOLORSCREEN
-dCOLORSCREEN=0
-dCOLORSCREEN=false

On high-resolution devices (at least 150 dpi resolution, or ~-dDITHERPPI specified), ~-dCOLORSCREEN
forces the use of separate halftone screens with different angles for CMYK or RGB if halftones are needed
(this produces the best-quality output); ~-dCOLORSCREEN=0 uses separate screens with the same frequency
and angle; ~-dCOLORSCREEN=false forces the use of a single binary screen. The default if COLORSCREEN
is not specified is to use separate screens with different angles if the device has fewer than 5 bits per color,
and a single binary screen (which is never actually used under normal circumstances) on all other devices.

74 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

-dDITHERPPI= Ipi

Forces all devices to be considered high-resolution, and forces use of a halftone screen or screens with Ipi
lines per inch, disregarding the actual device resolution. Reasonable values for Ipi are N/5 to N/20, where
N is the resolution in dots per inch.

-dinterpolateControl= control_value

This allows control of the image interpolation.

By default InterpolateControl is | and the image rendering for images that have /Interpolate true
are interpolated to the full device resolution. Otherwise, images are rendered using the nearest neighbour
scaling (Bresenham’s line algorithm through the image, plotting the closest texture coord at each pixel).
When downscaling this results in some source pixels not appearing at all in the destination. When upscal-
ing, each source pixels will cover at least one destination pixel.

When the control_value is 0 no interpolation is performed, whether or not the file has images with /
Interpolate true.

When the control_value is greater than 1 interpolation is performed for images with /Interpolate true
as long as the image scaling factor on either axis is larger than the control_value. Also, the interpolation
only produces images that have (device resolution / control_value) maximum resolution rather than full
device resolution. This allows for a performance vs. quality tradeoff since the number of pixels produced
by the interpolation will be a fraction of the interpolated pixels at full device resolution. Every source
pixel will contribute partially to the destination pixels.

When the InterpolateControl control_value is less than 0 interpolation is forced as if all images have
/Interpolate true, and the interpolation is controlled by the absolute value of the control_value as
described above. Thus, -dInterpolateControl=-1 forces all images to be interpolated at full device
resolution.

Computationally, image interpolation is much more demanding than without interpolation (lots of floating
point muliplies and adds for every output pixel vs simple integer additions, subtractions, and shifts).

In all but special cases image interpolation uses a Mitchell filter function to scale the contributions for
each output pixel. When upscaling, every output pixel ends up being the weighted sum of 16 input pixels,
When downscaling more source pixels will contribute to the interpolated pixels. Every source pixel has
some effect on the output pixels.

-dDOINTERPOLATE

This option still works, but is deprecated, and is the equivalent of -dInterpolateControl=-1.

-dNOINTERPOLATE

This option still works, but is deprecated and is the equivalent of -dInterpolateControl=0.

Turns off image interpolation, improving performance on interpolated images at the expense of image
quality. ~-dNOINTERPOLATE overrides ~-dDOINTERPOLATE.

6.9. Command line options 75

Ghostscript Documentation, Release 10.03.1

-dTextAlphaBits= n

-dGraphicsAlphaBits= n

These options control the use of subsample antialiasing. Their use is highly recommended for producing
high quality rasterizations. The subsampling box size n should be 4 for optimum output, but smaller values
can be used for faster rendering. Antialiasing is enabled separately for text and graphics content. Allowed
values are 1, 2 or 4.

Note:

Because of the way antialiasing blends the edges of shapes into the background when they are drawn
some files that rely on joining separate filled polygons together to cover an area may not render as expected with
GraphicsAlphaBits at 2 or 4. If you encounter strange lines within solid areas, try rendering that file again with

-dGraphicsAlphaBits=1.

Further note: because this feature relies upon rendering the input it is incompatible, and will generate an error on

attempted use, with any of the vector output devices.

-dAlignToPixels= n

Chooses glyph alignent to integral pixel boundaries (if set to the value 1) or to subpixels (value 0). Sub-
pixels are a smaller raster grid which is used internally for text antialiasing. The number of subpixels in a
pixel usually is 2ATextAlphaBits, but this may be automatically reduced for big characters to save space
in character cache.

The parameter has no effect if ~-dTextAlphaBits=1. Default value is 0.

Setting ~dAlignToPixels=0 can improve rendering of poorly hinted fonts, but may impair the appearance
of well-hinted fonts.

-dGridFitTT=n

This specifies the initial value for the implementation specific user parameter GridFitTT. It controls grid
fitting of True Type fonts (Sometimes referred to as “hinting”, but strictly speaking the latter is a feature of
Type 1 fonts). Setting this to 2 enables automatic grid fitting for True Type glyphs. The value O disables grid
fitting. The default value is 2. For more information see the description of the user parameter GridFitTT .

-dUseCIEColor

Set UseCIEColor in the page device dictionary, remapping device-dependent color values through a
Postscript defined CIE color space. Document DeviceGray, DeviceRGB and DeviceCMYK source col-
ors will be substituted respectively by Postscript CIEA, CIEABC and CIEDEFG color spaces. See the
document Ghostscript Color Management for details on how this option will interact with Ghostscript’s
ICC-based color workflow. If accurate colors are desired, it is recommended that an ICC workflow be
used.

76

Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

-dNOCIE

Substitutes DeviceGray for CIEBasedA, DeviceRGB for CIEBasedABC and CIEBasedDEF spaces and
DeviceCMYK for CIEBasedDEFG color spaces. Useful only on very slow systems where color accuracy
is less important.

-dNOSUBSTDEVICECOLORS

This switch prevents the substitution of the ColorSpace resources (DefaultGray, Defaul tRGB, and
Defaul tCMYK) for the DeviceGray, DeviceRGB, and DeviceCMYK color spaces. This switch is primar-
ily useful for PDF creation using the pdfwrite device when retaining the color spaces from the original
document is important.

-dNOPSICC

Disables the automatic loading and use of an input color space that is contained in a PostScript file as DSC
comments starting with the %%BeginICCProfile: comment. ICC profiles are sometimes embedded by
applications to convey the exact input color space allowing better color fidelity. Since the embedded ICC
profiles often use multidimensional RenderTables, color conversion may be slower than using the Default
color conversion invoked when the -dUseCIEColor option is specified, therefore the ~-dNOPSICC option
may result in improved performance at slightly reduced color fidelity.

-dNOTRANSPARENCY

Turns off PDF 1.4 transparency, resulting in faster (but possibly incorrect) rendering of pages containing
PDF 1.4 transparency and blending.

-dALLOWPSTRANSPARENCY

Enables the use of the Ghostscript custom transparency operators (7Transparency) from Postscript input.
Normally, these operators are not accessible from Postscript jobs, being primarily intended to be called
by the PDF interpreter. Using ~-dALLOWPSTRANSPARENCY leaves them available. It is important that these
operators are used correctly, especially the order in which they are called, otherwise unintended, even
undefined behavior may result.

-dNO_TN5044

Turns off the TN 5044 psuedo operators. These psuedo operators are not a part of the official Postscript
specification. However they are defined in Technical Note #5044 Color Separation Conventions for
PostScript Language Programs. These psuedo operators are required for some files from QuarkXPress.
However some files from Corel 9 and Illustrator 88 do not operate properly if these operators are present.

6.9. Command line options 77

Ghostscript Documentation, Release 10.03.1

-dDOPS

Enables processing of Subtype /PS streams in PDF files and the DoPS operator. DoPS has in fact been
deprecated for some time. Also the “PS” operator that was removed from the 1.3 2nd edition specification
is also disabled by default, and enabled by -dDOPS. Use of this option is NOT recommended in security-
conscious applications, as it increases the scope for malicious code. -dDOPS has no effect on processing
of PostScript source files. Note: in releases 7.30 and earlier, processing of DoPS was always enabled.

-dBlackText

Forces text to be drawn with black. This occurs for text fill and text stroke operations. PDF output created
with this setting will be updated to be drawn with gray values of 0. Type 3 fonts, which are sometimes
used for graphics, are not affected by this parameter. Note, works only for fills with gray, rgb, and cmyk.
Pattern, separation, and deviceN fills will not be affected.

-dBlackVector

Forces vector stroke and fills to be drawn with black. PDF output created with this setting will be updated
to be drawn with gray values of 0. Note, works only for fills with gray, rgb, and cmyk. Pattern, separation,
and deviceN fills will not be affected.

-dBlackThresholdL= float

Sets the threshold for the luminance value (L*) at which that value and above will be mapped to white
when using the BlackText and BlackVector option. Default is 90. Pure white has a value of 100. Pure
black has a value of 0. This means that if you set BlackThresholdL=101, all colors will be mapped to
black. If you set BlackThresholdL=75, colors that are below an L* value of 75 will be mapped to black.
Colors at or above an L* of 75 will be mapped to white, depending upon the setting of BlackThresholdC
(see below).

-dBlackThresholdC= float

For colors that are at or above the value set by BlackThresholdL (or the default setting of 90), map colors
to white that are within a distance of BlackThresholdC from the CIELAB neutral axis in terms of the L1
norm on the a* and b* value. All others are mapped to black. This has the effect of forcing colors with high
luminance and high chrominance to black (e.g. pure yellow) while those with a lower luminance and less
chrominance to white (e.g. a light gray). Default value is 3. You can visualize the region that is mapped
to white as a cuboid that is centered on the CIELAB neutral axis with one end tied to the L*=100 value.
The cuboid cross sections across the neutral axis are squares whose size is set by BlackThresholdC. The
cuboid length is set by BlackThresholdL and is effectively 100-BlackThresholdL.

78 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

Page parameters

-dFirstPage= pagenumber

Begin on the designated page of the document. Pages of all documents in PDF collections are numbered
sequentionally.

-dLastPage= pagenumber

Stop after the designated page of the document. Pages of all documents in PDF collections are numbered
sequentionally.

-sPagelList= pagenumber

There are three possible values for this; even, odd or a list of pages to be processed. A list can include
single pages or ranges of pages. Ranges of pages use the minus sign ‘-’, individual pages and ranges of
pages are separated by commas °,’. A trailing minus ‘-> means process all remaining pages. For example:

e -sPagelist=1, 3,5 indicates that pages 1, 3 and 5 should be processed.
* -sPageList=5-10 indicates that pages 5, 6, 7, 8, 9 and 10 should be processed.

e -sPagelList=1, 5-10, 12 indicates that pages 1,5, 6,7, 8,9, 10 and 12 onwards should be pro-
cessed.

The PDF interpreter and the other language interpreters handle these in slightly different ways. Because PDF files
enable random access to pages in the document the PDF inerpreter only interprets and renders the required pages. PCL
and PostScript cannot be handled in ths way, and so all the pages must be interpreted. However only the requested
pages are rendered, which can still lead to savings in time. Be aware that using the ‘%d’ syntax for OutputFile
does not reflect the page number in the original document. If you chose (for example) to process even pages by using
-sPageList=even, then the output of -sOutputFile=out%d.png would still be out®.png, outl.png, out2.png
etc.

Because the PostScript and PCL interpreters cannot determine when a document terminates, sending multple files
as input on the command line does not reset the PageList between each document, each page in the second and
subsequent documents is treated as following on directly from the last page in the first document. The PDF interpreter,
however, does not work this way. Since it knows about individual PDF files the PageList is applied to each PDF file
separately. So if you were to set -~sPageList=1, 2 and then send two PDF files, the result would be pages 1 and 2 from
the first file, and then pages 1 and 2 from the second file. The PostScript interpreter, by contrast, would only render
pages 1 and 2 from the first file. This means you must exercise caution when using this switch, and probably should
not use it at all when processing a mixture of PostScript and PDF files on the same command line.

-dFIXEDMEDIA

Causes the media size to be fixed after initialization, forcing pages of other sizes or orientations to be
clipped. This may be useful when printing documents on a printer that can handle their requested paper size
but whose default is some other size. Note that -g automatically sets ~-dFIXEDMEDIA, but -sPAPERSIZE=
does not.

6.9. Command line options 79

Ghostscript Documentation, Release 10.03.1

-dFIXEDRESOLUTION

Causes the media resolution to be fixed similarly. -r automatically sets ~-dFIXEDRESOLUTION.

-dPSFitPage

The page size from the PostScript file setpagedevice operator, or one of the older statusdict page
size operators (such as letter or a4) will be rotated, scaled and centered on the “best fit” page size from
those availiable in the InputAttributes list. The -dPSFitPage is most easily used to fit pages when
used with the ~-dFIXEDMEDIA option.

This option is also set by the -dFitPage option.

-dReopenPerPage

Normally, when using a single fixed filename (e.g. output.tif’) the Ghostscript device will not release the
file handle when a page is complete, but instead will retain it for the next page. The file handle is only
released when the device is closed. However, if ~-dReopenPerPage=true, then the file handle will be
released at the end of the page and a new file (with the same name) will be created for the next page,
thereby creating a new file handle.

-dORIENT1=true
-dORIENT1=false

Defines the meaning of the 0 and 1 orientation values for the setpage [params] compatibility operators.
The default value of ORIENT1 is true (set in gs_init.ps), which is the correct value for most files that
use setpage[params] at all, namely, files produced by badly designed applications that “know” that the
output will be printed on certain roll-media printers: these applications use 0 to mean landscape and 1
to mean portrait. ~-dORIENT1=false declares that 0 means portrait and 1 means landscape, which is the
convention used by a smaller number of files produced by properly written applications.

-dDEVICEWIDTHPOINTS= w
-dDEVICEHEIGHTPOINTS= h

Sets the initial page width to w or initial page height to h respectively, specified in 1/72” units.

-sDEFAULTPAPERSIZE= a4

This value will be used to replace the device default papersize ONLY if the default papersize for the device
is ‘letter’ or ‘a4’ serving to insulate users of A4 or 8.5x11 from particular device defaults (the collection
of contributed drivers in Ghostscript vary as to the default size).

80 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

-dFitPage

This is a “convenience” operator that sets the various options to perform page fitting for specific file types.
This option sets the ~-dEPSFitPage, ~-dPDFFitPage, and the -dFitPage options.

-sNupControl= Nup_option_string

This option specifies the N-up nesting to be performed. The pages are scaled and arranged on the current

Page

Size “master” page according the the option.

The only option strings are as follows:

-sNupControl=numberlxnumber2

Will fit numberl nested pages across the master page, and number2 down the master page, from the
upper left, then to the right to fill the row, moving down to the leftmost place on the next row until the
nest is complete. A partially filled nest will be output when the -sNupControl= string is changed,
when Ghostscript exits, or when the page size changes.

Pages are scaled to fit the requested number horizontally and vertically, maintaining the aspect ratio. If the
scaling selected for fitting the nested pages leaves space horizontally on the master page, the blank area
will be added to the left and right of the entire row of nested pages. If the fit results in vertical space, the
blank area will be added above and below all of the rows.

-sNupControl=

An empty string will turn off nesting. If there are any nested pages on the master page, the partially
filled master page will be output. Printer devices typically reallocate their memory whenever the
transparency use of a page changes (from one page having transparency, to the next page not having
transparency, or vice versa). This would cause problems with Nup, possibly leading to lost or corrupt
pages in the output. To avoid this, the Nup device changes the parameters of the page to always set the
PageUsesTransparency flag. While this should be entirely transparent for the user and not cause
extra transparency blending operations during the standard rendering processes for most devices, it
may cause devices to use the clist rather than PageMode.

Font-related parameters

-dLOCALFONTS

Causes Type 1 fonts to be loaded into the current VM — normally local VM - instead of always being
loaded into global VM. Useful only for compatibility with Adobe printers for loading some obsolete fonts.

-dNOFONTMAP

Suppresses the normal loading of the Fontmap file. This may be useful in environments without a file
system.

6.9. Command line options

81

Ghostscript Documentation, Release 10.03.1

-dNOFONTPATH

Suppresses consultation of GS_FONTPATH. This may be useful for debugging.

-dNOPLATFONTS

Disables the use of fonts supplied by the underlying platform (X Windows or Microsoft Windows). This
may be needed if the platform fonts look undesirably different from the scalable fonts.

-dNONATIVEFONTMAP

Disables the use of font map and corresponding fonts supplied by the underlying platform. This may be
needed to ensure consistent rendering on the platforms with different fonts, for instance, during regression
testing.

-sFONTMAP-= filename1;filename2;. ..

[T

Specifies alternate name or names for the Fontmap file. Note that the names are separated by “:”” on Unix

€, 732

systems, by “;” on MS Windows systems, and by “,” on VMS systems, just as for search paths.

-sFONTPATH= dir1;dir2;...

Specifies a list of directories that will be scanned when looking for fonts not found on the search path,
overriding the environment variable GS_FONTPATH.

By implication, any paths specified by FONTPATH or GS_FONTPATH are automatically added to the permit
file read list (see “-dSAFER”).

-sSUBSTFONT= fontname

Causes the given font to be substituted for all unknown fonts, instead of using the normal intelligent sub-
stitution algorithm. Also, in this case, the font returned by findfont is the actual font named fontname, not
a copy of the font with its FontName changed to the requested one.

Note: THIS OPTION SHOULD NOT BE USED WITH HIGH LEVEL (VECTOR) DEVICES, such as pdfwrite,
because it prevents such devices from providing the original font names in the output document. The font specified
(fontname) will be embedded instead, limiting all future users of the document to the same approximate rendering.

82 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

Resource-related parameters

-sGenericResourceDir= path

Specifies a path to resource files. The value is platform dependent. It must end with a directory separator.
A note for Windows users, Artifex recommends the use of the forward slash delimiter due to the special
interpretation of \" by the Microsoft C startup code. See Parsing C Command-Line Arguments for more
information.

Adobe specifies GenericResourceDir to be an absolute path to a single resource directory. Ghostscript
instead maintains multiple resource directories and uses an extended method for finding resources, which
is explained in “Finding PostScript Level 2 resources”.

Due to the extended search method, Ghostscript uses GenericResourceDir only as a default direc-
tory for resources being not installed. Therefore GenericResourceDir may be considered as a place
where new resources to be installed. The default implementation of the function ResourceFileName
uses GenericResourceDir when it is an absolute path, or when the resource file is absent.

The extended search method does not call ResourceFileName.

Default value is (. /Resource/) for Unix, and an equivalent one on other platforms.

-sFontResourceDir= path

Specifies a path where font files are installed. It’s meaning is similar to GenericResourceDir.

Default value is (. /Font/) for Unix, and an equivalent one on other platforms.
Interaction-related parameters
-dBATCH

Causes Ghostscript to exit after processing all files named on the command line, rather than going into an
interactive loop reading PostScript commands. Equivalent to putting -c quit at the end of the command
line.

-dNOPAGEPROMPT

Disables only the prompt, but not the pause, at the end of each page. This may be useful on PC displays
that get confused if a program attempts to write text to the console while the display is in a graphics mode.

-dNOPAUSE

Disables the prompt and pause at the end of each page. Normally one should use this (along with -dBATCH)
when producing output on a printer or to a file; it also may be desirable for applications where another
program is “driving” Ghostscript.

6.9. Command line options

83

http://msdn.microsoft.com/en-us/library/a1y7w461.aspx

Ghostscript Documentation, Release 10.03.1

-dNOPROMPT

Disables the prompt printed by Ghostscript when it expects interactive input, as well as the end-of-page
prompt (-dNOPAGEPROMPT). This allows piping input directly into Ghostscript, as long as the data doesn’t
refer to currentfile.

-dQUIET

Suppresses routine information comments on standard output. This is currently necessary when redirecting
device output to standard output.

-dSHORTERRORS

Makes certain error and information messages more Adobe-compatible.

-sstdout= filename

Redirect PostScript %stdout to a file or stderr, to avoid it being mixed with device stdout. To redirect
stdout to stderr use -sstdout=%stderr. To cancel redirection of stdout use -sstdout=%stdout or
-sstdout=-.

Note: This redirects PostScript output to %$stdout but does not change the destination FILE of device output as with
-sOutputFile=- or even -sOutputFile=%stdout since devices write directly using the stdout FILE * pointer with
C function calls such as fwrite or fputs.

-dTTYPAUSE

Causes Ghostscript to read a character from /dev/tty, rather than standard input, at the end of each page.
This may be useful if input is coming from a pipe.

Note: -dTTYPAUSE overrides -dNOPAUSE.

Device and output selection parameters

-dNODISPLAY

Initializes Ghostscript with a null device (a device that discards the output image) rather than the default
device or the device selected with -sDEVICE=. This is usually useful only when running PostScript code
whose purpose is to compute something rather than to produce an output image.

84 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

-sDEVICE= device

Selects an alternate initial output device.

-sOutputFile= filename

Selects an alternate output file (or pipe) for the initial output device, as described above.

-d.lgnoreNumCopies= true

Some devices implement support for “printing” multiple copies of the input document and some do not,
usually based on whether it makes sense for a particular output format. This switch instructs all devices to
ignore a request to print multiple copies, giving more consistent behaviour.

Deferred Page Rendering

Raster printers and image formats that can use the “command list” (clist) to store a representation of the page prior to
rendering can use the --saved-pages= string on the command line for deferred rendering of pages.

Pages that are saved instead of printed are retained until the list of saved pages is emptied by the flush command of the
saved-pages= command string.

Pages can be printed in reverse or normal order, or selected pages, including all even or all odd, and multiple collated
copies can be produced. Since pages are saved until the flush command, pages can be printed multiple times, in any
order.

Refer to the Using Saved Pages document for details.

EPS parameters

-dEPSCrop

Crop an EPS file to the bounding box. This is useful when converting an EPS file to a bitmap.

-dEPSFitPage

Resize an EPS file to fit the page. This is useful for shrinking or enlarging an EPS file to fit the paper size
when printing. This option is also set by the -~dFitPage option.

-dNOEPS

Prevent special processing of EPS files. This is useful when EPS files have incorrect Document Structuring
Convention comments.

6.9. Command line options 85

Ghostscript Documentation, Release 10.03.1

ICC color parameters

For details about the ICC controls see the document GS9 Color Management.

-sDefaultGrayProfile= filename

Set the ICC profile that will be associated with undefined device gray color spaces. If this is not set, the
profile file name “default_gray.icc” will be used as the default.

-sDefaultRGBProfile= filename

Set the ICC profile that will be associated with undefined device RGB color spaces. If this is not set, the
profile file name “default_rgb.icc” will be used as the default.

-sDefaultCMYKProfile= filename

Set the ICC profile that will be associated with undefined device CMYK color spaces. If this is not set,
the profile file name “default_cmyk.icc” will be used as the default.

-sDeviceNProfile= filename

Associate a devicen color space contained in a PS or PDF document with an ICC profile. Note that neither
PS nor PDF provide in-document ICC profile definitions for DeviceN color spaces. With this interface it is
possible to provide this definition. The colorants tag order in the ICC profile defines the lay-down order of
the inks associated with the profile. A windows-based tool for creating these source profiles is contained
in ./toolbin/color/icc_creator.

-sOutputlCCProfile= filename

Set the ICC profile that will be associated with the output device. Care should be taken to ensure that the
number of colorants associated with the device is the same as the profile. If this is not set, an appropriate
profile (i.e. one with the proper number of colorants) will be selected from those in the directory specified
by ICCProfilesDir (see below). Note that if the output device is CMYK + spot colorants, a CMYK
profile can be used to provide color management for the CMYK colorants only. In this case, spot colors
will pass through unprocessed assuming the device supports those colorants. It is also possible for these
devices to specify NCLR ICC profiles for output.

-sICCOutputColors= “Cyan, Magenta, Yellow, Black, Orange, Violet”

For the psdcmyk and tiffsep separation devices, the device ICC profile can be an NCLR profile, which
means something that includes non-traditional inks like Orange, Violet, etc. In this case, the list of the
color names in the order that they exist in the profile must be provided with this command line option.
Note that if a color name that is specified for the profile occurs also within the document (e.g. “Orange”
above), then these color names will be associated with the same separation. Additional names beyond
those of the ICC profile component count can be included. In this case, those components will be installed
into the tiffsep or psdemyk device list of colors, following the ICC profile colors. The number of spot
colors (those that go beyond the standard CMYK colors) allowed by tiffsep or psdcmyk can be set using
-dMaxSpots=#. The default value for this is currently set to 10 (GS_SOFT_MAX_SPOTS). As an example

86 Chapter 6. Using

https://ghostscript.com/doc/current/GS9_Color_Management.pdf

Ghostscript Documentation, Release 10.03.1

consider the case where we wish to use a 6CLR ICC profile that includes Orange and Violet, but need the
device to include a specialty color component such as Varnish, which does not appear in the document and
is not handled by the 6CLR ICC profile.

In addition, we desire to allow one more spot color of the document to come through to our device.
For this case using -sICCOutputColors="Cyan, Magenta, Yellow, Black, Orange, Violet,
Varnish" -dMaxSpots=4 -sOutputICCProfile=My_6CLR_Profile.icc would provide the desired
outcome. Note that it is up to the device or through the use of -sNamedProfile (see below) to involve
the setting of any values in the Varnish channel. However, if an All color value is encountered in the
document, the Varnish component will have its value set as will the Orange and Violet values (Likewise
if a spot color named Varnish is encountered in the document the Varnish component will be used for the
values). The All value is typically used for placing registration targets on separations. Finally, note that if
an NCLR ICC profile is specified and ICCOutputColors is not used, then a set of default names will be
used for the extra colorants (non-CMYK) in the profile. These names are given as ICC_COLOR_N for the
Nth non-CMYK channel.

-sProofProfile= filename

Enable the specificiation of a proofing profile that will make the color management system link multiple
profiles together to emulate the device defined by the proofing profile. See the document GS9 Color
Management for details about this option.

-sDevicelLinkProfile= filename

Define a device link profile. This profile is used following the output device profile. Care should be taken
to ensure that the output device process color model is the same as the output color space for the device
link profile. In addition, the color space of the OutputICCProfile should match the input color space of
the device link profile. For example, the following would be a valid specification -sDEVICE=tiff32nc
-sOutputICCProfile=srgb.icc -sDeviceLinkProfile=1inkRGBtoCMYK.icc. In this case, the
output device’s color model is CMYK (tiff32nc) and the colors are mapped through sRGB and through a
devicelink profile that maps SRGB to CM YK values. See the document GS9 Color Management for details
about this option.

-sNamedProfile= filename

Define a structure that is to be used by the color management module (CMM) to provide color manage-
ment of named colors. While the ICC does define a named color format, this structure can in practice
be much more general. Many developers wish to use their own proprietary-based format for spot color
management. This command option is for developer use when an implementation for named color man-
agement is designed for the function gsicc_transform_named_color located in gsicccache.c . An example
implementation is currently contained in the code for the handling of both Separation and DeviceN colors.
For the general user this command option should really not be used.

6.9. Command line options 87

https://ghostscript.com/doc/current/GS9_Color_Management.pdf
https://ghostscript.com/doc/current/GS9_Color_Management.pdf
https://ghostscript.com/doc/current/GS9_Color_Management.pdf

Ghostscript Documentation, Release 10.03.1

-sBlendColorProfile= filename

With the PDF transparency imaging model, a color space can be specified within which the color blending
operations are to take place. Some files lack this specification, in which case the blending occurs in the
output device’s native color space. This dependency of blending color space on the device color model can
be avoided by using the above command to force a specific color space in which to perform the blending.

-dColorAccuracy= 0/1/2

Set the level of accuracy that should be used. A setting of 0 will result in less accurate color rendering
compared to a setting of 2. However, the creation of a transformation will be faster at a setting of 0
compared to a setting of 2. Default setting is 2.

-dRenderintent= 0/1/2/3

Set the rendering intent that should be used with the profile specified above by -sOutputICCProfile.
The options 0, 1, 2, and 3 correspond to the ICC intents of Perceptual, Colorimetric, Saturation, and
Absolute Colorimetric.

-dBlackPtComp= 0/1

Specify if black point compensation should be used with the profile specified above by
-sOutputICCProfile.

-dKPreserve= 0/1/2

Specify if black preservation should be used when mapping from CMYK to CMYK. When using littleCMS
as the CMM, the code 0 corresponds to no preservation, 1 corresponds to the PRESERVE_K_ONLY approach
described in the littleCMS documentation and 2 corresponds to the PRESERVE_K_PLANE approach. This
is only valid when using littleCMS for color management.

-sVectorlCCProfile= filename

Set the ICC profile that will be associated with the output device for vector-based graphics (e.g. Fill, Stroke
operations). Care should be taken to ensure that the number of colorants associated with the device is the
same as the profile. This can be used to obtain more saturated colors for graphics.

-dVectorintent= 0/1/2/3

Set the rendering intent that should be used with vector-based graphic objects. The options are the same
as specified for -dRenderIntent.

88 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

-dVectorBlackPt= 0/1

Specify if black point compensation should be used for vector-based graphic objects.

-dVectorKPreserve= 0/1/2

Specify if black preservation should be used when mapping from CMYK to CMYK for vector-based
graphic objects. The options are the same as specified for -dKPreserve.

-slmagelCCProfile= filename

Set the ICC profile that will be associated with the output device for images. Care should be taken to
ensure that the number of colorants associated with the device is the same as the profile. This can be used
to obtain perceptually pleasing images.

-dlmagelntent= 0/7/2/3

Set the rendering intent that should be used for images.

-dlmageBlackPt= 0/1

Specify if black point compensation should be used with images.

-dlmageKPreserve= 0/1/2

Specify if black preservation should be used when mapping from CMYK to CMYK for image objects.
The options are the same as specified for -dKPreserve.

-sTextICCProfile= filename

Set the ICC profile that will be associated with the output device for text. Care should be taken to ensure
that the number of colorants associated with the device is the same as the profile. This can be used ensure
K only text.

-dTextIntent= 0/1/2/3

Set the rendering intent that should be used text objects. The options are the same as specified for
-dRenderIntent.

6.9. Command line options

89

Ghostscript Documentation, Release 10.03.1

-dTextBlackPt= 0/1

Specify if black point compensation should be used with text objects.

-dTextKPreserve= 0/1/2

Specify if black preservation should be used when mapping from CMYK to CMYK for text objects. The
options are the same as specified for ~-dKPreserve.

-dOverridelCC

Override any ICC profiles contained in the source document with the profiles specified by
sDefaultGrayProfile, sDefaul tRGBProfile, sDefaultCMYKProfile. Note that if no profiles are
specified for the default Device color spaces, then the system default profiles will be used. For detailed
override control in the specification of source colors see -sSourceObjectICC.

-sSourceObjectICC= filename

This option provides an extreme level of override control to specify the source color spaces and render-
ing intents to use with vector-based graphics, images and text for both RGB and CMYK source objects.
The specification is made through a file that contains on a line a key name to specify the object type (e.g.
Image_CMYK) followed by an ICC profile file name, a rendering intent number (0 for perceptual, 1 for
colorimetric, 2 for saturation, 3 for absolute colorimetric) and information for black point compensation,
black preservation, and source ICC override. It is also possible to turn off color management for certain
object types, use device link profiles for object types and do custom color replacements. An example file
is given in ./gs/toolbin/color/src_color/objsrc_profiles_example.txt. Profiles to demon-
strate this method of specification are also included in this folder. Note that if objects are colorimetrically
specified through this mechanism other operations like -dImageIntent, -dOverrideICC, have no affect.
Also see below the interaction with the -dDeviceGrayToK option. See further details in the document
GS9 Color Management.

-dDeviceGrayToK= true/false

By default, Ghostscript will map DeviceGray color spaces to pure K when the output device is
CMYK based. This may not always be desired. In particular, it may be desired to map from the
gray ICC profile specified by -sDefaultGrayProfile to the output device profile. To achieve this,
one should specify -dDeviceGrayToK=false. Note that this option may not have any effect in cases
where SourceObjectICC settings are made for gray objects. In particular, if the gray objects in
SourceObjectICC are set to None, which implies that ICC color management is not to be applied to
these objects, then they are treated as DeviceGray and always mapped to K values in a CMYK target de-
vice, regardless of the settings of -dDeviceGrayToK (i.e. there is no color management). If instead, the
gray objects in SourceObjectICC are set to a specific ICC profile, then they are no longer DeviceGray
but are ICC colors. They will be color managed, regardless of the setting of -dDeviceGrayToK.

90 Chapter 6. Using

https://ghostscript.com/doc/current/GS9_Color_Management.pdf

Ghostscript Documentation, Release 10.03.1

-dUseFastColor= true/false

This is used to avoid the use of ICC profiles for source colors. This includes those that are defined by
DeviceGray, DeviceRGB and DeviceCMYK definitions as well as ICC-based color spaces in the source
document. With UseFastColor set to true, the traditional Postscript 255 minus operations are used to
convert between RGB and CMYK with black generation and undercolor removal mappings.

-dSimulateOverprint= true/false

This option has been replaced by -dOverprint=

-dOverprint= /enable | /disable | /simulate

This option provides control of overprinting. The default setting is /enable which allows devices such as
CMYK that can support overprint to leave planes unchanged under control of PostScript and PDF overprint
settings.

The /disable setting ignores all overprint (and overprint mode) from the input.

If /simulate is set, then pages with overprint (or overprint mode) set for CMYK or Separation colors will
be internally maintained and output to RGB or Gray devices.

Note: Not all spot color overprint cases can be accurately simulated with a CMYK only device. For example, a case
where you have a spot color overprinted with CMYK colors will be indistiguishable from a case where you have spot
color equivalent CMYK colorants overprinted with CMYK colors, even though they may need to show significantly
different overprint simulations. To obtain a full overprint simulation, use the /simulate setting or the psdcmyk or tiffsep
device, where the spot colors are kept in their own individual planes.

-dUsePDFX3Profile= int

This option enables rendering with an output intent defined in the PDF source file. If this option is included
in the command line, source device color values (e.g DeviceCMYK, DeviceRGB, or DeviceGray) that
match the color model of the output intent will be interpreted to be in the output intent color space. In
addition, if the output device color model matches the output intent color model, then the destination ICC
profile will be the output intent ICC profile. If there is a mismatch between the device color model and
the output intent, the output intent profile will be used as a proofing profile, since that is the intended
rendering. Note that a PDF document can have multiple rendering intents per the PDF specification. As
such, with the option -dUsePDFX3Profile the first output intent encountered will be used. It is possible
to specify a particular output intent where int is an integer (a value of 0 is the same as not specifying a
number). Probing of the output intents for a particular file is possible using extractlCCprofiles.ps in ./
gs/toolbin. Finally, note that the ICC profile member entry is an option in the output intent dictionary.
In these cases, the output intent specifies a registry and a standard profile (e.g. Fogra39). Ghostscript will
not make use of these output intents. Instead, if desired, these standard profiles should be used with the
commands specified above (e.g. -sOutputICCProfile).

6.9. Command line options 91

Ghostscript Documentation, Release 10.03.1

-sUseOutputintent= sitring

Like -dUsePDFX3Profile above, this option enables rendering with an output intent defined in the PDF
source file. This option behaves the same way as the ~-dUsePDFX3Profile, but the selection criteria are
different. Because its possible (as of PDF 2.0) for each page to have a different array, its not sufficient just
to supply an array index, as the same profile might potentially be at different indices in each array.

Instead this option takes a string, which is first compared against the OutputConditionIdentifier in
each OutputIntent in the array. If the OutputConditionIdentifier is not a standard identifier then
it should be Custom and the UseOutputIntent string will be matched against the value of the Info key
instead. If the OutputConditionIdentifier or Info matches the value of UseQuttpulntent, then
that OutputIntent is selected if the OutputIntent contains a DestOutputProfile key.

-sICCProfilesDir= path

Set a directory in which to search for the above profiles. The directory path must end with a file system
delimiter. If the user doesn’t use the -sICCProfilesDir= command line option, Ghostscript creates a
default value for it by looking on the directory paths explained in How Ghostscript finds files. If the current
directory is the first path a test is made for the iccprofiles directory. Next, the remaining paths with
the string Resource in it are tested. The prefix up to the path separator character preceding the string
Resource, concatenated with the string iccprofiles is used and if this exists, then this path will be used
for ICCProfilesDir.

Note that if the build is performed with COMPILE_INITS=1, then the profiles contained in gs/
iccprofiles will be placed in the ROM file system. If a directory is specified on the command line
using -sICCProfilesDir=, that directory is searched before the iccprofiles/ directory of the ROM
file system is searched.

Note: A note for Windows users, Artifex recommends the use of the forward slash delimiter due to the special
interpretation of \" by the Microsoft C startup code. See Parsing C Command-Line Arguments for more information.

Other parameters

-dFILTERIMAGE

If set, this will ignore all images in the input (in this context image means a bitmap), these will therefore
not be rendered.

-dFILTERTEXT

If set, this will ignore all text in the input (just because it looks like text doesn’t mean it is, it might be an
image), text will therefore not be rendered.

92 Chapter 6. Using

http://msdn.microsoft.com/en-us/library/a1y7w461.aspx

Ghostscript Documentation, Release 10.03.1

-dFILTERVECTOR

If set, this will ignore anything which is neither text nor an image.

-dDELAYBIND

Causes bind to remember all its invocations, but not actually execute them until the .bindnow procedure
is called. Useful only for certain specialized packages like pstotext that redefine operators. See the docu-
mentation for .bindnow for more information on using this feature.

-dDOPDFMARKS

Causes pdfmark to be called for bookmarks, annotations, links and cropbox when processing PDF files.
Normally, pdfmark is only called for these types for PostScript files or when the output device requests it
(e.g. pdfwrite device).

-dJOBSERVER

Define \004 (D) to start a new encapsulated job used for compatibility with Adobe PS Interpreters that
ordinarily run under a job server. The -dNOOUTERSAVE switch is ignored if ~-dJOBSERVER is specified
since job servers always execute the input PostScript under a save level, although the exitserver operator
can be used to escape from the encapsulated job and execute as if the ~-dNOOUTERSAVE was specified. This
also requires that the input be from stdin, otherwise an error will result (Error: /invalidrestore in
--restore--).

Example usage is:

gs ... -dJOBSERVER - < inputfile.ps

Or:

cat inputfile.ps | gs ... -dJOBSERVER -

Note: The AD does not result in an end-of-file action on stdin as it may on some PostScript printers that rely on TBCP
(Tagged Binary Communication Protocol) to cause an out-of-band AD to signal EOF in a stream input data. This means
that direct file actions on stdin such as flushfile and closefile will affect processing of data beyond the AD in

the stream.

-dNOCACHE

Disables character caching. Useful only for debugging.

6.9. Command line options

93

Ghostscript Documentation, Release 10.03.1

-dNOGC

Suppresses the initial automatic enabling of the garbage collector in Level 2 systems. (The vmreclaim
operator is not disabled.) Useful only for debugging.

-dNOOUTERSAVE

Suppresses the initial save that is used for compatibility with Adobe PS Interpreters that ordinarily run un-
der a job server. If a job server is going to be used to set up the outermost save level, then -dNOOUTERSAVE
should be used so that the restore between jobs will restore global VM as expected.

-dNOSAFER

Equivalent to ~-dDELAYSAFER.

This flag disables SAFER mode until the .setsafe procedure is run. This is intended for clients or
scripts that cannot operate in SAFER mode. If Ghostscript is started with ~dNOSAFER or -dDELAYSAFER,
PostScript programs are allowed to read, write, rename or delete any files in the system that are not pro-
tected by operating system permissions.

This mode should be used with caution, and . setsafe should be run prior to running any PostScript file
with unknown contents.

-dSAFER

Important: Ghostscript now (as of 9.50) defaults to SAFER being active.

Enables access controls on files. Access controls fall into three categories, files from which Ghostscript
is permitted to read, ones to which it is permitted to write, and ones over which it has “control” (i.e.
delete/rename). These access controls apply to all files accessed via Ghostscript’s internal interface to the
C library file handling. Whilst we have taken considerable pains to ensure that all the code we maintain (as
well as the so called “contrib” devices, that are devices included in our release packages, but not strictly
maintained by the Ghostscript development team) uses this interface, we have no control over thirdparty
code.

This is an entirely new implementation of SAFER for Ghostscript versions 9.50 and later. Earlier versions
relied on storing the file permission lists in Postscript VM (Virtual Memory), and only applied file access
permissions to the Postscript file related operators. It relied on restricting the function of setpagedevice
to avoid the device code from being manipulated into opening arbitrary files. The application of the file
permissions was done within the internal context of the Postscript interpreter, and some other aspects of
the Postscript restrictions were applied in the Postscript environment. With so many of the feature’s ca-
pabilities relying on the Postscript context and environment, by using other (Ghostscript specific) features
maliciously, the restrictions could be overridden.

Whilst the path storage and application of the permissions is implemented entirely in C, it is still possible
for Postscript to add and remove paths from the permissions lists (see .addcontrolpath) until such time as
the access controls are enabled (see .activatepathcontrol), any call to .addcontrolpath after .activatepath-
control will result in a Fatal error causing the interpreter to immediately exit.

An incompatibility exists between the pre-9.50 and 9.50 and later SAFER. By removing storage and appli-
cation entirely from the Postscript language environment and internal context, SAFER is no longer affected
by Postscript save/restore operations. Previously, it was possible to do the equivalent of:

94 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

save
.setsafe
Postscript ops
restore

In that sequence, the Postscript ops would run with SAFER protection but after the restore, SAFER would
no longer be in force. This is no longer the case. After the call to .setsafe the file controls are in
force until the interpreter exits. As the 9.50 and later implementation no longer restricts the operation of
setpagedevice, and because this capability is extremely rarely used, we feel the improvement in security
warrants the small reduction in flexibility.

Path matching is very simple: it is case sensitive, and we do not implement full featured “globbing” or
regular expression matching (such complexity would significantly and negatively impact performance).
Further, the string parameter(s) passed to the --permit-file-* option must exactly match the string(s)
used to reference the file(s): for example, you cannot use an absolute path to grant permission, and then
a relative path to reference the file (or vice versa) - the path match will fail. Similarly, you cannot grant
permission through one symlink, and then reference a file directly, or through an alternative symlink -
again, the matching will fail.

The following cases are handled:

"/path/to/file"

Permits access only to the file: “/path/to/file”

"/path/to/directory/"

Permits access to any file in, and only in, the directory: “/path/to/directory”

"/path/to/directory/*"

Permits access to any file in the directory: ““/path/to/directory” and any child of that directory.

Important: Note for Windows Users

The file/path pattern matching is case sensitive, even on Windows. This is a change in behaviour compared
to the old code which, on Windows, was case insensitive. This is in recognition of changes in Windows
behaviour, in that it now supports (although does not enforce) case sensitivity.

Four command line parameters permit explicit control of the paths included in the access control lists:

--permit-file-read=pathlist

Adds a path, or list of paths, to the “permit read” list. A list of paths is a series of paths separated by the
appropriate path list separator for your platform (for example, on Unix-like systems it is “:” and on MS
Windows it is “;”).

--permit-file-write=pathlist

Adds a path, or list of paths, to the “permit write” list. A list of paths is a series of paths separated by the
appropriate path list separator for your platform (for example, on Unix-like systems it is “:”” and on MS
Windows it is ;).

--permit-file-control=pathlist

6.9. Command line options

95

Ghostscript Documentation, Release 10.03.1

Adds a path, or list of paths, to the “permit control” list. A list of paths is a series of paths separated by
the appropriate path list separator for your platform (for example, on Unix-like systems it is ““:”” and on MS
Windows it is “;”).

--permit-file-all=pathlist

Adds a path, or list of paths, to the all the above lists. A list of paths is a series of paths separated by the
appropriate path list separator for your platform (for example, on Unix-like systems it is “:” and on MS
Windows it is “;”).

“*’ may be used as a wildcard in the above paths to mean “any character other than the directory separator.
Do not use two or more *’s without intervening characters.

Finally, paths supplied on the command line (such as those in -I, -sFONTPATH parameters) are added to
the permitted reading list. Similarly, paths read during initialisation from Fontmap, cidfmap, and the
platform specific font file enumeration (e.g. fontconfig on Unix systems) are automatically added to the
permit read lists.

-dPreBandThreshold= true/false

If the target device is a halftone device, then images that are normally stored in the command list during
banded output will be halftoned during the command list writing phase, if the resulting image will result
in a smaller command list. The decision to halftone depends upon the output and source resolution as well
as the output and source color space.

-dWRITESYSTEMDICT

Leaves systemdict writable. This is necessary when running special utility programs such as font2c and
pcharstr, which must bypass normal PostScript access protection.

6.10 Improving performance

Ghostscript attempts to find an optimum balance between speed and memory consumption, but there are some cases

in which you may get a very large speedup by telling Ghostscript to use more memory.

Please note that this discussion relates to devices which produce a bitmap format as the output. These parameters have

no effect on the vector devices, such as pdfwrite.

* For raster printers and image format (jpeg*, tift*, png* ...) devices, performance can be ‘tuned’ by adjusting

some of the parameters related to banding (clist) options (refer to: Banding Parameters).

» All devices may use a display list (“clist”’) and use banding when rendering PDF 1.4 transparency. This prevents
allocation of excessively large amounts of memory for the transparency buffer stack. The -dMaxBitmap= option
is used to control when to use the display list, and the other banding parameters mentioned above control the

band size.

In general, page buffer mode is faster than banded/clist mode (a full page buffer is used when
-dMaxBitmap=# is large enough for the entire raster image) since there is no need to write, then
interpret the clist data.

On a multi-core system where multiple threads can be dispatched to individual processors/cores, band-
ing mode may provide higher performance since -dNumRenderingThreads=# can be used to take
advantage of more than one CPU core when rendering the clist. The number of threads should gen-
erally be set to the number of available processor cores for best throughput.

96

Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

In general, larger -~dBufferSpace=# values provide slightly higher performance since the per-band
overhead is reduced.

* If you are using X Windows, setting the -~dMaxBitmap= parameter described in X device parameters may dra-
matically improve performance on files that have a lot of bitmap images.

» With some PDF files, or if you are using Chinese, Japanese, or other fonts with very large character sets, adding
the following sequence of switches before the first file name may dramatically improve performance at the cost of
an additional memory. For example, to allow use of 30Mb of extra RAM use: -c 30000000 setvmthreshold
-f.

This can also be useful in processing large documents when using a high-level (vector) output device
(like pdfwrite) that maintains significant internal state.

* For pattern tiles that are very large, Ghostscript uses an internal display list (memory based clist), but this can
slow things down. The current default threshold is 8Mb — pattern tiles larger than this will be cached as clist
rather than bitmap tiles. The parameter -dMaxPatternBitmap=# can be used to adjust this threshold, smaller
to reduce memory requirements and larger to avoid performance impacts due to clist based pattern handling.

For example, -dMaxPatternBitmap=200000 will use clist based patterns for pattern tiles larger than
200,000 bytes.

6.11 Summary of environment variables

6.11.1 GS, GSC (MS Windows only)

Specify the names of the Ghostscript executables. GS brings up a new typein window and possibly a
graphics window; GSC uses the DOS console. If these are not set, GS defaults to gswin32, and GSC
defaults to gswin32c.

6.11.2 GS_DEVICE

Defines the default output device. This overrides the compiled-in default, but is overridden by any com-
mand line setting.

6.11.3 GS_FONTPATH

Specifies a list of directories to scan for fonts if a font requested can’t be found anywhere on the search
path.

6.11.4 GS_LIB

Provides a search path for initialization files and fonts.

6.11. Summary of environment variables 97

Ghostscript Documentation, Release 10.03.1

6.11.5 GS_OPTIONS

Defines a list of command-line arguments to be processed before the ones actually specified on the
command line. For example, setting GS_DEVICE to XYZ is equivalent to setting GS_OPTIONS to
-SDEVICE=XYZ. The contents of GS_OPTIONS are not limited to switches; they may include actual file
names or even “@file” arguments.

6.11.6 TEMP, TMPDIR

Defines a directory name for temporary files. If both TEMP and TMPDIR are defined, TMPDIR takes prece-
dence.

6.12 Debugging

The information here describing is probably interesting only to developers.

6.12.1 Debug switches

There are several debugging switches that are detected by the interpreter. These switches are available whether or not
Ghostscript was built with the DEBUG macro defined to the compiler (refer to building a debugging configuration).

Previous to 8.10, there was a single DEBUG flag, enabled with -dDEBUG on the command line. Now there are several de-
bugging flags to allow more selective debugging information to be printed containing only what is needed to investigate
particular areas. For backward compatibilty, the ~-dDEBUG option will set all of the subset switches.

-dCCFONTDEBUG Compiled Fonts
-dCFFDEBUG CFF Fonts
-dCMAPDEBUG CMAP
-dDOCIEDEBUG CIE color
-dEPSDEBUG EPS handling
-dFAPIDEBUG Font API
-dINITDEBUG Initialization
-dPDFDEBUG PDF Interpreter
-dPDFWRDEBUG PDF Writer
-dSETPDDEBUG setpagedevice
-dSTRESDEBUG Static Resources
-dTTFDEBUG TTF Fonts
-dVGIFDEBUG ViewGIF
-dVIPGDEBUG ViewJPEG

The PDF interpreter normally tries to repair, or ignore, all problems encountered in PDF files. Setting
-dPDFSTOPONERROR instead causes the interpreter to signal an error and stop processing the PDF file, instead of print-
ing a warning.

The -dPDFSTOPONWARNING switch behaves the same, but will stop if a condition which would normally merit a warning
(instead of an error) is encountered. Note that setting ~-dPDFSTOPONWARNING also sets ~-dPDFSTOPONERROR.

The -Z and -T switches apply only if the interpreter was built for a debugging configuration. In the table below, the
first column is a debugging switch, the second is an equivalent switch (if any) and the third is its usage.

98 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

Switch Equivalent switch | Usage
0 garbage collector, minimal detail
1 type 1 and type 42 font interpreter
2 curve subdivider/rasterizer
3 curve subdivider/rasterizer, detail
4 garbage collector (strings)
5 garbage collector (strings, detail)
6 garbage collector (clumps, roots)
7 garbage collector (objects)
8 garbage collector (refs)
9 garbage collector (pointers)
a allocator (large blocks only)
A allocator (all calls)
b bitmap image processor
B bitmap images, detail
C color/halftone mapper
d dictionary put/undef
D dictionary lookups
e external (OS-related) calls
f fill algorithm (summary)
F fill algorithm (detail)
g gsave/grestore[all]
h halftone renderer
H halftones, every pixel
i interpreter, just names
I interpreter, everything
j (Japanese) composite fonts
k character cache and xfonts
K character cache, every access
1 command lists, bands
L command lists, everything
m makefont and font cache
n name lookup (new names only)
o outliner (stroke)
0 stroke detail
p band list paths
P all paths
q clipping
r arc renderer
S streams
S scanner
t tiling algorithm
u undo saver (for save/restore), finalization
U undo saver, more detail
v compositors: alpha/transparency/overprint/rop
v compositors: alpha/transparency/overprint/rop, more detail
W compression encoder/decoder
X transformations
y Type 1 hints
Y Type 1 hints, every access
z trapezoid fill

continues on next page

6.12. Debugging

99

Ghostscript Documentation, Release 10.03.1

Table 1 - continued from previous page

Switch Equivalent switch | Usage
operator error returns
% externally processed comments

image and RasterOp parameters

command list and allocator/time summary

math functions and Functions

contexts, create/destroy

contexts, every operation

reference counting

high-level (vector) output

Postscript operator names (this option 1is available only
when Ghostscript is compiled with a predefined macro DE-
BUG_TRACE_PS_OPERATORS)

(reserved for experimental code)

The following switch affects what is printed, but does not select specific items for printing:

Switch

Equivalent switch

Usage

/

include file name and line number on all trace output

These switches select debugging options other than what should be printed:

Switch Equivalent switch | Usage
$ set unused parts of object references to identifiable garbage values
+ use minimum-size stack blocks
) don’t use path-based banding
don’t use high-level banded images
? validate pointers before, during and after garbage collection, also
before and after save and restore; also make other allocator validity
checks
@ fill newly allocated, garbage-collected, and freed storage with a
marker (al, cl, and f1 respectively)
f the filling algorithm with characters
F the filling algorithm with non-character paths
h the Type 1 hinter
s the shading algorithm
S the stroking algorithm
100 Chapter 6. Using

Ghostscript Documentation, Release 10.03.1

Switches used in debugging

Switch

Description

-Bsize

Run all subsequent files named on the command line (ex-
cept for -F) through the run_string interface, using a
buffer of size bytes.

Turn off -B: run subsequent files (except for -F) directly
in the normal way.

-Ffile

Execute the file with -B1 temporarily in effect

-Kn

Limit the total amount of memory that the interpreter
can have allocated at any one time to nK bytes. nis a
positive decimal integer.

-Mn

Force the interpreter’s allocator to acquire additional
memory in units of nK bytes, rather than the default 20K.
n is a positive decimal integer, on 16-bit systems no
greater than 63.

-Nn

Allocate space for nK names, rather than the default
(normally 64K).

n may be greater than 64 only if EXTEND_NAMES was
defined (in inameidx.h) when the interpreter was com-
piled.

-ZXXX
-Z-XXX

Turn debugging printout on (off). Each of the xxx char-
acters selects an option.
Case is significant: “a” and “A” have different meanings.

-Txxx
-T-xxx

Turn Visual Trace on (off). Each of the xxx characters
selects an option.

Case is significant: “f” and “F” have different meanings.

In addition, calling Ghostscript with --debug will list all the currently defined (non visual trace) debugging flags, both
in their short form (as listed above for use with -Z) and in a long form, which can be used as in: --debug=tiling,
alloc. All the short form flags for -Z have an equivalent long form. Future flags may be added with a long form only
(due to all the short form flags being used already).

6.12.2 Visual Trace

Visual Trace allows to view internal Ghostscript data in a graphical form while execution of C code. Special instructions
to be inserted into C code for generating the output. Client application rasterizes it into a window.

Currently the rasterization is implemented for Windows only, in clients gswin32.exe and gswin32c.exe. They open
Visual Trace window when graphical debug output appears, -T switch is set, and Ghostscript was built with DEBUG
option.

There are two important incompletenesses of the implementation :
1. The graphical output uses a hardcoded scale. An advanced client would provide a scale option via user interface.

2. Breaks are not implemented in the client. If you need a step-by-step view, you should use an interactive C
debugger to delay execution at breakpoints.

6.12. Debugging 101

Ghostscript Documentation, Release 10.03.1

6.13 Appendix: Paper sizes known to Ghostscript

The paper sizes known to Ghostscript are defined at the beginning of the initialization file gs_statd.ps; see the
comments there for more details about the definitions. The table here lists them by name and size. gs_statd.ps
defines their sizes exactly in points, and the dimensions in inches (at 72 points per inch) and centimeters shown in
the table are derived from those, rounded to the nearest 0.1 unit. A guide to international paper sizes can be found at

papersizes.org.

6.13.1 U.S. standard

Name Inches mm Points Notes
WxH W x H W x H
11x17 11.0x 17.0 279 x 432 792 x 1224 11x17in portrait
ledger 17.0x 11.0 432 x 279 1224 x 792 11x17in landscape
legal 8.5x14.0 216 x 356 612 x 1008
letter 8.5x11.0 216 x 279 612 x 792
letter small 8.5x11.0 216 x 279 612 x 792
archA 9.0x12.0 229 x 305 648 x 864
archB 12.0x 18.0 305 x 457 864 x 1296
archC 18.0x24.0 457 x 610 1296 x 1728
archD 24.0 x 36.0 610x 914 1728 x 2592
archE 36.0 x 48.0 914 x 1219 2592 x 3456
102 Chapter 6. Using

https://www.papersizes.org/

Ghostscript Documentation, Release 10.03.1

6.13.2 ISO standard

Name Inches mm Points Notes
WxH W x H W x H
a0 33.1x46.8 841 x 1189 2384 x 3370
al 23.4x 33.1 594 x 841 1684 x 2384
a2 16.5x23.4 420 x 594 1191 x 1684
a3 11.7 x 16.5 297 x 420 842 x 1191
ad 83x11.7 210x 297 595 x 842
adsmall 83x11.7 210 x 297 595 x 842
a5 5.8x8.3 148 x 210 420 x 595
ab 4.1x58 105 x 148 297 x 420
a7 29x4.1 74 x 105 210 x 297
a8 21x29 52x 74 148 x 210
a9 1.5x2.1 37x52 105 x 148
alo 1.0x1.5 26 x 37 73 x 105
isob0 39.4x 55.7 1000 x 1414 2835 x 4008
isobl 27.8x394 707 x 1000 2004 x 2835
isob2 19.7x 27.8 500 x 707 1417 x 2004
isob3 13.9x 19.7 353 x 500 1001 x 1417
isob4 9.8x13.9 250 x 353 709 x 1001
isob5 6.9x9.8 176 x 250 499 x 709
isob6 49x6.9 125 x 176 354 x 499
c0 36.1 x51.1 917 x 1297 2599 x 3677
cl 25.5 x 36.1 648 x 917 1837 x 2599
c2 18.0x25.5 458 x 648 1298 x 1837
c3 12.8 x 18.0 324 x 458 918 x 1298
c4 9.0x12.8 229 x 324 649 x 918
c5 6.4x9.0 162 x 229 459 x 649
cb 45x64 114 x 162 323 x459
6.13.3 JIS standard
Name mm Notes
W xH
jisb0 1030 x 1456
jisbl 728 x 1030
jisb2 515x 728
jisb 364 x 515
jisb4 257 x 364
jisb5 182 x 257
jisb6 128 x 182

6.13. Appendix: Paper sizes known to Ghostscript

103

Ghostscript Documentation, Release 10.03.1

6.13.4 1SO/JIS switchable

Name

b0

bl

b2

b3

b4

b5

Note: Initially the B paper sizes are the ISO sizes, e.g., b0 is the same as isob0. Running the file 1ib/jispaper.ps
makes the B paper sizes be the JIS sizes, e.g., b0 becomes the same as jisb0.

6.13.5 Other

Name Inches mm Points Notes
W x H W x H W xH
flsa 8.5x13.0 216 x 330 612 x 936 U.S. foolscap
flse 8.5x13.0 216 x 330 612 x 936 European foolscap
halfletter 5.5x8.5 140 x 216 396 x 612
hagaki 39x5.8 100 x 148 283 x 420 Japanese postcard

104

Chapter 6. Using

https://discord.gg/TSpYGBW4eq

CHAPTER
SEVEN

INFORMATION FOR GHOSTSCRIPT DEVELOPERS

7.1 Introduction

This document provides a wealth of information about Ghostscript’s internals, primarily for developers actively working
on Ghostscript. It is primarily descriptive, documenting the way things are; the companion C style guide is primarily
prescriptive, documenting what developers should do when writing new code.

7.2 Architecture

7.2.1 Design Goals

Ghostscript has the following high-level design goals (not listed in order of importance):

Functionality
* Ability to interpret the current PostScript and PDF languages, as defined (and occasionally, in the case of conflict,
as implemented) by Adobe.
* Ability to convert PostScript to and from PDF, comparable to Adobe products.

* Ability to produce output for a wide range of resolutions (from TV-resolution displays to imagesetters) and color
models (black and white, multilevel gray, bilevel or multi-level RGB and CMYK, 6- or 8-color inkjet printers,
spot color).

Performance
* Ability to render PostScript and PDF with commercial-quality performance (memory usage, speed, and output
quality) on all platforms.

* Specifically, ability to render PostScript effectively in embedded environments with constrained RAM, including
the ability to put the code and supporting data in ROM.

105

Ghostscript Documentation, Release 10.03.1

Licensing

* Licensing that supports both the Open Source / Free software communities and a commercial licensing business.

* Freedom from licensing restrictions or fees imposed by third parties.

Other

» Easy source portability to any platform (CPU, operating system, and development tools) that has an ANSI C
compiler.

* Support for writing new interpreters and new drivers with no change to any existing code; specifically, ability to
support PCL 5e, PCL 5c, and PCL XL interpreters, and the ever-changing roster of inkjet printers.

These goals often conflict: part of Ghostscript’s claim to quality is that the conflicts have been resolved well.

7.3 Design principles

Part of what has kept Ghostscript healthy through many years of major code revisions and functional expansion is
consistent and conscientious adherence to a set of design principles. We hope the following list captures the most
important ones.

7.3.1 Non-preemption

Ghostscript is designed to be used as a component. As such, it must share its environment with other components.
Therefore, it must not require ownership of, or make decisions about, inherently shared resources. Specifically, it must
not assume that it can “own” either the locus of control or the management of the address space.

Not owning control means that whenever Ghostscript passes control to its caller, it must do so in a way that doesn’t
constrain what the caller can do next. The caller must be able to call any other piece of software, wait for an external
event, execute another task, etc., without having to worry about Ghostscript being in an unknown state. While this is
easy to arrange in a multi-threaded environment (by running Ghostscript in a separate thread), multi-threading APIs are
not well standardized at this time (December 2000), and may not be implemented efficiently, or at all, on some platforms.
Therefore, Ghostscript must choose between only two options for interacting with its caller: to return, preserving its
own state in data structures, or to call back through a caller-supplied procedure. Calling back constrains the client
program unacceptably: the callback procedure only has the options of either returning, or aborting Ghostscript. In
particular, if it wants (for whatever reason) to multi-task Ghostscript with another program, it cannot do so in general,
especially if the other program also uses callback rather than suspension. Therefore, Ghostscript tries extremely hard
to return, rather than calling back, for all caller interaction. In particular:

e For callers that want to pass input to Ghostscript piece by piece, Ghostscript returns with an
gs_error_NeedInput code rather than using a callback. This allows the caller complete flexibility in its control
structure for managing the source of input. (It might, for example, be generating the input dynamically).

¢ In the future, the same arrangement should be used for input from stdin and output to stdout and stderr.

 Likewise, scheduling of Ghostscript’s own threads (contexts), currently done with a callback, should be done
with suspension. The Display Ghostscript project (GNU DGS) is working on this.

The one area where suspension is not feasible with Ghostscript’s current architecture is device output. Device drivers
are called from deep within the graphics library. (If Ghostscript were being redesigned from scratch, we might try to
do this with suspension as well, or at least optional suspension.)

Not owning management of the address space means that even though Ghostscript supports garbage collection for its
own data, it must not do any of the things that garbage collection schemes for C often require: it must not replace

106 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

‘malloc’ and ‘free’, must not require its clients to use its own allocator, must not rely on manipulating the read/write
status of memory pages, must not require special compiler or run-time support (e.g., APIs for scanning the C stack),
must not depend on the availability of multi-threading, and must not take possession of one of a limited number of
timer interrupts. However, in order not to constrain its own code unduly, it must also not require using special macros
or calls to enter or leave procedures or assign pointers, and must not constrain the variety of C data structures any more
than absolutely necessary. It achieves all of these goals, at the expense of some complexity, some performance cost
(mostly for garbage collection), and some extra manual work required for each structure type allocated by its allocator.
The details appear in the Memory management section below.

7.3.2 Multi-instantiability

From many years of experience with the benefits of object-oriented design, we have learned that when the word “the”
appears in a software design — “the” process scheduler, “the” memory manager, “the” output device, “the” interpreter,
“the” stack — it often flags an area in which the software will have difficulty adapting to future needs. For this rea-
son, Ghostscript attempts to make every internal structure capable of existing in multiple instances. For example,
Ghostscript’s memory manager is not a one-of-a-kind entity with global state and procedures: it is (or rather they are,
since Ghostscript has multiple memory managers, some of which have multiple instances) objects with their own state
and (virtual) procedures. Ghostscript’s PostScript interpreter has no writable non-local data (necessary, but not suffi-
cient, to allow multiple instances), and in the future will be extended to be completely reentrant and instantiable. The
device driver API is designed to make this easy for drivers as well. The graphics library is currently not completely
reentrant or instantiable: we hope this will occur in the future.

7.3.3 Late configuration binding

Ghostscript is designed to make configuration choices as late as possible, subject to simplicity and performance con-
siderations. The major binding times for such choices are compilation, linking, startup, and dynamic.

* Compilation binds only CPU and compiler characteristics (including data type size, presence of floating point
hardware, and data alignment), and whether the code will be used for production, debugging, or profiling.

* Linking binds the choice of what features and device drivers will be included in the executable. (Work is under-
way to make the choice of drivers dynamic).

« Startup binds essentially nothing. Almost every option and parameter that can appear on the command line can
also be changed dynamically.

» The selection of output device, all parameters associated with the device, the selection of debugging printout and
self-checking (in debugging configurations), the macro-allocation of memory, and almost all other operational
parameters are dynamic.

In addition, a number of major implementation decisions are made dynamically depending on the availability of re-
sources. For example, Ghostscript chooses between banded and non-banded rendering depending on memory avail-
ability.

7.3.4 Large-scale structure

At the largest design scale, Ghostscript consists of 4 layers. Layer N is allowed to use the facilities of all layers M <=
N.

1. The bottom layer is called the substrate. It includes facilities like memory management, streams, fixed-point
arithmetic, and low-level interfaces to the operating system. The substrate is written in C, with a little C++
and/or assembler code for some platforms.

2. The layer above the substrate is the graphics layer. It consists of two separate sub-parts. The graphics layer is
written in C.

7.3. Design principles 107

Ghostscript Documentation, Release 10.03.1

* The graphics library manages graphics state information for, and decomposes and renders 2-D images
described using, a graphics model that is approximately the union of those of PostScript, PDF, and PCL
5e/5c¢/XL.

* The device drivers are called by the graphics library to produce actual output. The graphics library, and all
higher layers, call device driver procedures only through virtual functions.

3. The principal clients of the graphics layer are language interpreters. Ghostscript as distributed includes the
PostScript interpreter; there are also interpreters for PCL Se, PCL 5c, and PCL XL, which are not currently
freely redistributable and are not included in the standard Ghostscript package. The PostScript interpreter is
written partly in C and partly in PostScript.

4. The PDF interpreter is actually a client of the PostScript interpreter: it is written entirely in PostScript.

The most important interface in Ghostscript is the API between the graphics library and the device drivers: new printers
(and, to a lesser extent, window systems, displays, plotters, film recorders, and graphics file formats) come on the scene
frequently, and it must be possible to produce output for them with a minimum of effort and distruption. This API is the
only one that is extensively documented (see Drivers) and kept stringently backward-compatible through successive
releases.

7.3.5 Object-oriented constructs

Ghostscript makes heavy use of object-oriented constructs, including analogues of classes, instances, subclassing,
and class-associated procedures. Since Ghostscript is written in C, not C++, implementing these constructs requires
following coding conventions. The “Objects” section of the C style guide explains these.

The memory manager API provides run-time type information about each class, but this information does not include
anything about subclassing. See under Structure descriptors below.

7.4 File roadmap

This section of the document provides a roadmap to all of the Ghostscript source files.

7.4.1 Substrate

Runtime Context

The libctx provides pointers to memory, stdio, and various other runtime portablility services:
base/gslibctx.h, base/gslibctx.c

Memory manager

See Memory Management

108 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

Streams

Framework, file and string streams:
base/gsdsrc.c, base/gsdsrc.h, base/scommon.h, base/strmio.c, base/strmio.h, base/sfxboth.c, base/sfxfd.c,
base/sfxstdio.c, base/sfxcommon.c, base/stream.h, base/stream.c, base/strimpl.h.

Standard filters:

CCITTFax:
base/scf.h, base/scfd.c, base/scfdgen.c, base/scfdtab.c, base/scfe.c, base/scfetab.c, base/scfparam.c,
base/scfx.h.

DCT (JPEG):
base/gsjconf.h, base/gsjmorec.h, base/sdcparam.c, base/sdcparam.h, base/sdct.h, base/sdctc.c,
base/sdctd.c, base/sdcte.c, base/sddparam.c, base/sdeparam.c, base/sjpeg.h, base/sjpegc.c,
base/sjpegd.c, base/sjpege.c.

JBIG2:
base/sjbig2.h, base/sjbig2.c

JPX (JPEG 2000):
base/sjpx_openjpeg.h, base/sjpx_openjpeg.c

Other compression/decompression:
base/slzwec.c, base/slzwd.c, base/slzwe.c, base/slzwx.h, base/srld.c, base/srle.c, base/srlx.h.

Other:
base/sa85d.c, base/sa85d.h, base/sa85x.h, psi/sfilter].c, base/sfilter2.c, base/sstring.c, base/sstring.h.

Non-standard filters used to implement standard filters:
base/seexec.c, base/sfilter.h, base/shc.c, base/shc.h, base/spdiff.c, base/spdiffx.h, base/spngp.c, base/spngpx.h,
base/szlibc.c, base/szlibd.c, base/szlibe.c, base/szlibx.h, base/szlibxx.h.

Non-standard filters:
base/sbcp.c, base/sbep.h, base/sbtx.h, base/smdS.c, base/smd5.h, base/saes.c, base/saes.h, base/sarc4.c,
base/sarc4.h,

Internal filters:
base/siinterp.c, base/siinterp.h, base/siscale.c, base/siscale.h, base/sidscale.c, base/sidscale.h, base/sisparam.h.

Higher-level stream support:
base/spprint.c, base/spprint.h, base/spsdf.c, base/spsdf.h, base/srdline.h.

Platform-specific code

See Cross-platform APIs.

Miscellaneous
Library top level:
base/gsinit.c, base/gslib.h.

Configuration-related:
base/gconf.c, base/gconf.h, base/gscdef.c, base/gscdefs.h, base/gsromfs0.c.

Arithmetic:
base/gxarith.h, base/gxdda.h, base/gxfarith.h, base/gxfixed.h, base/gxfrac.h.

Operating system interface:
base/gserrors.h, base/gsexit.h, base/gxstdio.h, base/gxsync.c, base/gxsync.h.

7.4. File roadmap 109

Ghostscript Documentation, Release 10.03.1

Other:
base/gsargs.c, base/gsargs.h, base/gserrors.h, base/gsnotify.c, base/gsnotify.h, base/gsrect.h, base/gstypes.h,
base/gsuid.h, base/gsutil.h, base/gsutil.c, base/gx.h, base/gsmd5.c, base/gsmd5.h, base/aes.c, base/aes.h.

7.4.2 Graphics library

Support

Bitmap processing:
base/gsbitcom.c, base/gsbitmap.h, base/gsbitops.c, base/gsbitops.h, base/gsbittab.c, base/gsbittab.h,
base/gsflip.c, base/gsflip.h, base/gxbitmap.h, base/gxbitops.h, base/gxsample.c, base/gxsample.h.
base/gxsamplp.h.

Functions:
base/gsfunc.c, base/gsfunc.h, base/gsfunc0.c, base/gsfunc0.h, base/gsfunc3.c, base/gsfunc3.h, base/gsfunc4.c,
base/gsfunc4.h, base/gxfunc.h.

Parameter lists:
base/gscparam.c, base/gsparam.c, base/gsparam.h, base/gsparam2.c (not used), base/gsparams.c,
base/gsparams.h, base/gsparamx.c, base/gsparamx.h.

I/O-related:
base/gdevpipe.c, base/gsfname.c, base/gsfname.h, base/gsio.h, base/gsiodev.c, base/gsiodevs.c, base/gsiodisk.c,
base/gsiorom.c. base/gsiorom.h. base/gxiodev.h.

Paths

Coordinate transformation:
base/gscoord.c, base/gscoord.h, base/gsmatrix.c, base/gsmatrix.h, base/gxcoord.h, base/gxmatrix.h.

Path building:
base/gsdpsl.c, base/gspath.c, base/gspath.h, base/gspathl.c, base/gspath2.h, base/gxpath.c, base/gxpath.h,
base/gxpath2.c, base/gxpcopy.c, base/gxpdash.c, base/gxpflat.c, base/gzpath.h.

Path rendering:
base/gdevddrw.c, base/gdevddrw.h, base/gxdtfillLh, base/gsdpsl.c, base/gspaint.c, base/gspaint.h,
base/gspenum.h, base/gxfill.c, base/gxfill.h, base/gxfillsl.h, base/gxfilltr.h, base/gxfillts.h, base/gximask.c,
base/gximask.h, base/gxfdrop.c, base/gxfdrop.h, base/gxpaint.c, base/gxpainth, base/gxstroke.c,
base/gzspotan.c, base/gzspotan.h.

Clipping:
See under Clipping below.

Text

Fonts, generic:
base/gsfont.c, base/gsfont.h, devices/gxfcopy.c, devices/gxfcopy.h, base/gxfont.h.

Fonts, specific FontTypes:
base/gsfcid.c, base/gsfcid.c, base/gsfcmap.c, base/gsfcmapl.c, base/gsfcmap.h, base/gsfont0.c, base/gsfontOc.c,
base/gxcid.h, base/gxfcid.h, base/gxfcmap.h, base/gxfcmap1.h, base/gxfont0.h, base/gxfontOc.h, base/gxfont1.h,
base/gxfont42.h, base/gxftype.h, base/gxttf.h.

Character rendering + font cache, generic:
base/gsccode.h, base/gschar.c, base/gschar.h, base/gscpm.h, base/gsgdata.c, base/gsgdata.h, base/gsgcache.c,

110 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

base/gsgcache.h, base/gstext.c, base/gstext.h, base/gxbcache.c, base/gxbcache.h, base/gxccache.c,
base/gxccman.c, base/gxchar.c, base/gxchar.h, base/gxfcache.h, base/gxtext.h.

Character rendering, specific FontTypes:
base/gscharO.c, base/gscryptl.c, base/gscryptl.h, base/gstypel.c, base/gstypel.h, base/gstype2.c,
base/gstyped2.c, base/gxchrout.c, base/gxchrout.h, base/gxhintn.h, base/gxhintn.c, base/gxhintnl.c,
base/gxtypel.c, base/gxtypel.h.

Images

Buffered API (mostly for PostScript interpreter):
base/gsimage.c, base/gsimage.h.

Generic support:
base/gsiparam.h, base/gxiclass.h, base/gximage.c, base/gximage.h, base/gxiparam.h.

Type 1 and 4 images:

Setup:
base/gsiparm4.h, base/gximagel.c, base/gximage4.c.

Rendering:
base/gxil2bit.c, base/gxil6bit.c, base/gxicolor.c, base/gxidata.c, base/gxifast.c, base/gximono.c,
base/gxino12b.c, base/gxino16b.c, base/gxipixel.c, base/gxiscale.c.

Type 2 images (Display PostScript):
base/gsiparm?2.h, base/gximage?2.c.

Type 3 images:
base/gsipar3x.h, base/gsiparm3.h, base/gximag3x.c, base/gximag3x.h, base/gximage3.c, base/gximage3.h.

Other:
base/gsimpath.c, base/simscale.c, base/simscale.h.

Paint

Ghostscript uses 4 internal representations of color. We list them here in the order in which they occur in the rendering
pipeline.

1. Clients of the graphics library normally specify colors using the client color structure (gs_client_color,
defined in psi/gs.color.h), consisting of one or more numeric values and/or a pointer to a Pattern instance.
This corresponds directly to the values that would be passed to the PostScript setcolor operator: one or more
(floating-point) numeric components and/or a Pattern. Client colors are interpreted relative to a color space
(gs_color_space, defined in base/gscspace.h and base/gxcspace.h, with specific color spaces defined in other
files). Client colors do not explicitly reference the color space in which they are are interpreted: setcolor uses
the color space in the graphics state, while images and shadings explicitly specify the color space to be used.

2. For ordinary non-Pattern colors, the first step in color rendering reduces a client color to a concrete color — a set
of values in a color space that corresponds to the device’s color model (except for possible conversions between
DeviceGray, DeviceRGB, and DeviceCM YK), together with an identification of the associated color space. (The
confusion here between color spaces and color models will have to be cleaned up when we implement native
Separation/DeviceN colors.) Concrete colors are like the numeric values in a client color, except that they are
represented by arrays of frac values (defined in base/gxfrac.h) rather than floats. The procedure for this step
is the virtual concretize_color and concrete_space procedures in the (original) color space. This step
reduces Indexed colors, CIEBased colors, and Separation and DeviceN colors that use the alternate space.

3. The final step requires mapping a concrete color to the device’s color model, done by procedures in
base/gxcmap.c. These procedures combine the following three conceptual sub-steps:

7.4. File roadmap 111

Ghostscript Documentation, Release 10.03.1

* A possible mapping between Device color spaces, possibly involving black generation and undercolor re-
moval. The non-trivial cases are implemented in base/gxdcconv.c.

* Application of the transfer function(s) (done in-line).
» Halftoning if necessary: see below.

The result is called (inappropriately) a device color (gx_device_color, defined in psi/gs.color.h and
base/gxdcolor.h). For ordinary non-Pattern colors, a device color is either a pure color, or a halftone. The
device and color model associated with a device color are implicit. The procedure for this step is the virtual
remap_concrete_color procedure in the color space.

4. The pure colors that underlie a device color are opaque pixel values defined by the device (misnamed
gx_color_index, defined in base/gscindex.h). The device with which they are associated is implicit. Although
the format and interpretation of a pixel value are known only to the device, the device’s color model and color
representation capabilities are public, defined by a gx_color_info structure stored in the device (defined in
base/gxdevcli.h). Virtual procedures of the device driver map between pixel values and RGB or CMYK. (This
area is untidy and will need to be cleaned up when we implement native Separation/DeviceN colors).

Steps 2 and 3 are normally combined into a single step for efficiency, as the remap_color virtual procedure in a color
space.

Using a device color to actually paint pixels requires a further step called color loading, implemented by the load virtual
procedure in the device color. This does nothing for pure colors, but loads the caches for halftones and Patterns.

All of the above steps — concretizing, mapping to a device color, and color loading — are done as late as possible,
normally not until the color is actually needed for painting.

All painting operations (fill, stroke, imagemask/show) eventually call a virtual procedure in the device color, either
fill_rectangle or £ill_mask to actually paint pixels. For rectangle fills, pure colors call the device’s fill_rectangle
procedure; halftones and tiled Patterns call the device’s strip_tile_rectangle; shaded Patterns, and painting op-
erations that involve a RasterOp, do something more complicated.

Color specification:
base/gsdcolor.h, base/gscolor.c, base/gscolorh, base/gscolorl.c, base/gscolorl.h, base/gscolor2.c,
base/gscolor2.h, base/gscolor3.c, base/gscolor3.h, base/gshsb.c, base/gshsb.h, base/gxcolor2.h, base/gxcvalue.h.

Color spaces:
base/gscdevn.c, base/gscdevn.h, base/gscie.c, base/gscie.h, base/gscpixel.c, base/gscpixel.h, base/gscscie.c,
base/gscsepr.c, base/gscsepr.h, base/gscspace.c, base/gscspace.h, base/gscssub.c, base/gscssub.h,
base/gxcdevn.h, base/gxcie.h, base/gxcspace.h.

Color mapping:
base/gsciemap.c, base/gscindex.h, base/gscrd.c, base/gscrd.h, base/gscrdp.c, base/gscrdp.h, base/gscsel.h,
base/gxcindex.h, base/gxcmap.c, base/gxcmap.h, Dbase/gxctable.c, base/gxctable.h, base/gxdcconv.c,
base/gxdcconv.h, base/gxdcolor.c, base/gxdcolor.h, base/gxdevndi.c, base/gxdevndi.h, base/gxdither.h,
base/gxfmap.h, base/gxlum.h, base/gxtmap.h.

ICC profiles are in some ways a special case of color mapping, but are not standard in PostScript.
base/gsicc.c, base/gsicc.h,

The following files provide a callback mechanism to allow a client program to specify a special case alternate
tint transforms for Separation and DeviceN color spaces. Among other uses this can be used to provide special
handling for PANTONE colors.

base/gsnamecl.c, base/gsnamecl.h, base/gsncdummy.c, base/gsncdummy.h, psi/zncdummy.c

Ghostscript represents halftones internally by “whitening orders” — essentially, arrays of arrays of bit coordinates within
a halftone cell, specifying which bits are inverted to get from halftone level K to level K+1. The code does support all
of the PostScript halftone types, but they are all ultimately reduced to whitening orders.

112 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

Threshold arrays, the more conventional representation of halftones, can be mapped to whitening orders straightfor-
wardly; however, whitening orders can represent non-monotonic halftones (halftones where the bits turned on for level
K+1 don’t necessarily include all the bits turned on for level K), while threshold arrays cannot. On the other hand,
threshold arrays allow rapid conversion of images (using a threshold comparison for each pixel) with no additional
space, while whitening orders do not: they require storing the rendered halftone cell for each possible level as a bitmap.

Ghostscript uses two distinct types of rendered halftones — that is, the bitmap(s) that represent a particular level.

* Binary halftones. The rendered halftone is a single bit plane; each bit selects one of two pure colors. These are
fast but limited: they are used for monochrome output devices, or for color devices in those cases where only
two distinct colors are involved in a halftone (e.g., a pure cyan shade on a CMYK device). The device color for
a binary halftone stores a pointer to the halftone bitmap, and the two pure colors.

* Multi-plane halftones. Internally, each plane is rendered individually. Since there isn’t enough room to store all
27N pure colors, multi-plane halftones only store the scaled values for the individual components; the halftone
renderer maps these to the pure colors on the fly, then combines the planes to assemble an N-bit index into the
list of colors for each pixel, and stores the color into the fully rendered halftone.

The halftone level for rendering a color is computed in base/gxdevndi.c; the actual halftone mask or tile is computed
either in base/gxcht.c (for multi-plane halftones), or in base/gxht.c and base/gxhtbit.c (for binary halftones).

Halftoning:
base/gsht.c, base/gsht.h, base/gshtl.c, base/gshtl.h, base/gshtscr.c, base/gshtx.c, base/gshtx.h, base/gxcht.c,
base/gxdht.h, base/gxdhtres.h, base/gxht.c, base/gxht.h, base/gxhtbit.c, base/gxhttile.h, base/gxhttype.h,
base/gzht.h.

Pattern colors (tiled patterns and shadings) each use a slightly different approach from solid colors.

The device color for a tiled (PatternType 1) pattern contains a pointer to a pattern instance, plus (for uncolored patterns)
the device color to be masked. The pattern instance includes a procedure that actually paints the pattern if the pattern is
not in the cache. For the PostScript interpreter, this procedure returns an gs_error_RemapColor exception code: this
eventually causes the interpreter to run the pattern’s PaintProc, loading the rendering into the cache, and then re-execute
the original drawing operator.

Patterns:
base/gs.color.c, base/gs.color.h, base/gsptypel.c, base/gsptypel.h, base/gxplfill.c, base/gxplimpl.h,
base/gxpcache.h, base/gxpcmap.c, base/gxpcolor.h.

The device color for a shading (PatternType 2) pattern also contains a pointer to a pattern instance. Shadings are not
cached: painting with a shading runs the shading algorithm every time.

Shading:
base/gsptype2.c, base/gsptype2.h, base/gsshade.c, base/gsshade.h, base/gxshade.c, base/gxshade.h,
base/gxshadel.c, base/gxshade4.c, base/gxshade4.h, base/gxshadeb6.c, base/gscicach.h, base/gscicach.c.

In addition to the PostScript graphics model, Ghostscript supports RasterOp, a weak form of alpha channel, and even-
tually the full PDF 1.4 transparency model. The implemention of these facilities is quite slipshod and scattered: only
RasterOp is really implemented fully. There is a general compositing architecture, but it is hardly used at all, and in
particular is not used for RasterOp. It is used for implementation of the general support for overprint and overprint
mode.

Compositing architecture:
base/gscompt.h, base/gxcomp.h.

RasterOp:
base/gdevdrop.c, base/gdevrops.c, base/gsrop.c, base/gsrop.h, base/gsropt.h, base/gsroptab.c, base/gxdevrop.h.

Alpha channel and compositing:
base/gsalpha.c, base/gsalpha.h, base/gsdpnext.h, base/gxalpha.h.

7.4. File roadmap 113

Ghostscript Documentation, Release 10.03.1

Advanced transparency:
base/gstparam.h, base/gstrans.c, base/gstrans.h, base/gxblend.c, base/gxblend.h, base/gdevpl4.c,
base/gdevpl4.h.

Overprint and Overprint mode:
base/gsovre.c, base/gsovre.h, base/gxoprect.c, base/gxoprect.h. There is support for both overprint and overprint
mode. There is a general compositor based implementation of these features for all devices. In addition, the
memory devices implement a higher speed set of special fill routines to improve performance for printer based
devices.

Clipping

The Ghostscript graphics library implements clipping by inserting a clipping device in the device pipeline. The clipping
device modifies all drawing operations to confine them to the clipping region.

The library supports three different kinds of clipping:

* Region/path clipping
This corresponds to the PostScript concept of a clipping path. The clipping region is specified either by a
list of rectangles (subject to the constraints documented in base/gxcpath.h), or by a path that is converted
to such a list of rectangles.

 Stationary mask clipping
This corresponds to the mask operand of a PostScript ImageType 3 image. The clipping region is specified
by a bitmap and an (X,Y) offset in the coordinate space.

¢ Tiled mask clipping
This corresponds to the region painted by a PostScript Pattern, for the case where the Pattern does not
completely cover its bounding box but the combined transformation matrix has no skew or non-orthogonal
rotation (i.e., XStep and YStep map respectively to (X,0) and (0,Y) or vice versa). The clipping region is
specified by a bitmap and an (X,Y) offset in the coordinate space, and is replicated indefinitely in both X
and Y.

Note that simply scan-converting a clipping path in the usual way does not produce a succession of rectangles that can
simply be stored as the list for region-based clipping: in general, the rectangles do not satisfy the constraint for rectangle
lists specified in base/gxcpath.h, since they may overlap in X, Y, or both. A non-trivial “clipping list accumulator”
device is needed to produce a rectangle list that does satisfy the constraint.

Clipping support:
base/gxclip.c, base/gxclip.h.

Region/path clipping:
base/gxcpath.c, base/gxcpath.h, base/gzcpath.h.

Clipping list accumulator:
base/gxacpath.c, base/gzacpath.h.

Mask clipping support:
base/gxmclip.c, base/gxmclip.h.

Stationary mask clipping:
base/gxclipm.c, base/gxclipm.h.

Tiled mask clipping:
base/gxclip2.c, base/gxclip2.h.

114 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

Other graphics

Miscellaneous graphics state:
base/gsclipsr.c, base/gsclipsr.h, base/gsdps.c, base/gsdps.h, base/gsdpsl.c, base/gsistate.c, base/gsline.c,
base/gsline.h, base/gslparam.h, base/gsstate.c, base/gsstate.h, base/gstrap.c, base/gstrap.h, base/gxclipsr.h,
base/gxistate.h, base/gxline.h, base/gxstate.h, base/gzline.h, base/gzstate.h.

Font API support

UFST bridge:
base/gxfapiu.c, base/gxfapiu.h.

Driver support

Generic driver support:
base/gdevdcrd.c, base/gdevderd.h, base/gdevdsha.c, base/gdevemap.c, base/gsdevice.c, base/gsdevice.h,
base/gsdparam.c, base/gsxfont.h, base/gxdevbuf.h, base/gxdevcli.h, base/gxdevice.h, base/gxrplane.h,
base/gxxfont.h.

Accessing rendered bits:
base/gdevdbit.c, base/gdevdgbr.c, base/gxbitfmt.h, base/gxgetbit.h.

“Printer” driver support:
devices/gdevmeds.c, devices/gdevmeds.h, base/gdevppla.c, base/gdevppla.h, base/gdevprn.c, base/gdevprn.h,
base/gdevprna.c, base/gdevprna.h, base/gxband.h, base/gxpageq.c, base/gxpageq.h.

High-level device support:
base/gdevvec.c, base/gdevvec.h, base/gxhldevc.c, base/gxhldevc.h.

Banding:
base/gxclbits.c, base/gxcldev.h, base/gxclfile.c, base/gxclimag.c, base/gxclio.h, base/gxclist.c, base/gxclist.h,
base/gxcllzw.c, base/gxclmem.c, base/gxclmem.h, base/gxclpage.c, base/gxclpage.h, base/gxclpath.c,
base/gxclpath.h, base/gxclrast.c, base/gxclread.c, base/gxclrect.c, base/gxclthrd.c, base/gxclthrd.h,
base/gxclutil.c, base/gxclzlib.c, base/gxdhtserial.c, base/gxdhtserial.h, base/gsserial.c, base/gsserial.h.

Visual Trace
Visual Trace support :
base/vdtrace.h, base/vdtrace.c.

See Visual Trace instructions for extensive documentation.

7.4.3 Device drivers

See Drivers for extensive documentation on the interface between the core code and drivers.

The driver API includes high-level (path / image / text), mid-level (polygon), and low-level (rectangle / raster) opera-
tions. Most devices implement only the low-level operations, and let generic code break down the high-level operations.
However, some devices produce high-level output, and therefore must implement the high-level operations.

7.4. File roadmap 115

Ghostscript Documentation, Release 10.03.1

Internal devices

There are a number of “devices” that serve internal purposes. Some of these are meant to be real rendering targets;
others are intended for use in device pipelines. The rendering targets are:

Memory devices, depth-independent:
base/gdevmem.c, base/gdevmem.h, base/gdevmpla.c, base/gdevmpla.h, base/gdevmrop.h, base/gsdevmem.c,
base/gxdevmem.h.

Memory devices, specific depths:
base/gdevml.c, base/gdevm2.c, base/gdevm4.c, base/gdevmS8.c, base/gdevml6.c, base/gdevm24.c,
base/gdevm32.c, base/gdevm40.c, base/gdevm48.c, base/gdevm56.c, base/gdevm6b4.c, base/gdevmrl.c,
base/gdevmr2n.c, base/gdevmr8n.c.

Alpha-related devices:
base/gdevabuf.c.

Other devices:
base/gdevdfit.c, base/gdevhit.c, base/gdevmrun.c, base/gdevmrun.h, base/gdevplnx.c, base/gdevplnx.h.

The forwarding devices meant for use in pipelines are:

The bounding box device:
base/gdevbbox.h, base/gdevbbox.c.

Clipping devices:
See under Clipping above.

Other devices:
base/gdevnfwd.c.

PostScript and PDF writers

Because PostScript and PDF have the same graphics model, lexical syntax, and stack-based execution model, the drivers
that produce PostScript and PDF output share a significant amount of support code. In the future, the PostScript output
driver should be replaced with a slightly modified version of the PDF driver, since the latter is far more sophisticated
(in particular, it has extensive facilities for image compression and for handling text and fonts).

The PDF code for handling text and fonts is complex and fragile. A major rewrite in June 2002 was intended to make
it more robust and somewhat easier to understand, but also increased its size by about 40%, contrary to the expectation
that it would shrink. Currently both sets of code are in the code base, with compatible APIs, selected by a line in
devices/devs.mak.

Shared support

Writing fonts:
devices/vector/gdevpsf.h, devices/vector/gdevpsfl.c, devices/vector/gdevpsf2.c, devices/vector/gdevpsfm.c, de-
vices/vector/gdevpsft.c, devices/vector/gdevpsfu.c, devices/vector/gdevpsfx.c, base/gscedata.c, base/gscedata.h,
base/gscencs.c, base/gscencs.h.

Other:
devices/vector/gdevpsdf.h, devices/vector/gdevpsdi.c, devices/vector/gdevpsdp.c, devices/vector/gdevpsds.c,
devices/vector/gdevpsds.h, devices/vector/gdevpsdu.c.

Encapsulated PostScript output driver (epswrite):
devices/vector/gdevpsu.c, devices/vector/gdevpsu.h.

116 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

PDF output driver (pdfwrite)

Substrate:
devices/vector/gdevpdfo.c, devices/vector/gdevpdfo.h, devices/vector/gdevpdfr.c, devices/vector/gdevpdfu.c.

Old text and fonts:
devices/vector/gdevpdfe.c, devices/vector/gdevpdft.c.

New text and fonts:
devices/vector/gdevpdt.c, devices/vector/gdevpdt.h, devices/vector/gdevpdtb.c, devices/vector/gdevpdtb.h, de-
vices/vector/gdevpdtc.c, devices/vector/gdevpdtd.c, devices/vector/gdevpdtd.h, devices/vector/gdevpdte.c, de-
vices/vector/gdevpdtf.c, devices/vector/gdevpdtf.h, devices/vector/gdevpdti.c, devices/vector/gdevpdti.h, de-
vices/vector/gdevpdts.c, devices/vector/gdevpdts.h, devices/vector/gdevpdtt.c, devices/vector/gdevpdtt.h, de-
vices/vector/gdevpdtv.c, devices/vector/gdevpdtv.h, devices/vector/gdevpdtw.c, devices/vector/gdevpdtw.h, de-
vices/vector/gdevpdtx.h. base/ConvertUTF.h, base/ConvertUTF.c,

Graphics:
devices/vector/gdevpdfc.c, devices/vector/gdevpdfc.h, devices/vector/gdevpdfd.c, devices/vector/gdevpdfg.c,
devices/vector/gdevpdfg.h, devices/vector/gdevpdfk.c, devices/vector/gdevpdft.c. devices/vector/gdevpdfv.c.

Images:
devices/vector/gdevpdfb.c, devices/vector/gdevpdfi.c, devices/vector/gdevpdfj.c.

Other:
devices/vector/gdevpdf.c, devices/vector/gdevpdfm.c, devices/vector/gdevpdfp.c, devices/vector/gdevpdfx.h.
devices/vector/gdevpdfb.h.

Other high-level devices

PCL XL output device (pxlmono, pxlcolor):
devices/vector/gdevpx.c, base/gdevpxat.h, base/gdevpxen.h, base/gdevpxop.h, devices/gdevpxut.c, de-
vices/gdevpxut.h.

Text extraction:
devices/vector/gdevtxtw.c.

Other:
devices/gdevtrac.c.

Other maintained drivers

The standard Ghostscript distribution includes a collection of drivers, mostly written by Aladdin Enterprises, that are
“maintained” in the same sense as the Ghostscript core code.

Display drivers:
devices/gdev8bcm.c, devices/gdev8bcm.h, devices/gdevevga.c, devices/gdevl256.c, base/gdevpcem.c,
base/gdevpccm.h, devices/gdevpcfb.c, devices/gdevpcfb.h, devices/gdevs3ga.c, devices/gdevsco.c, de-
vices/gdevsvga.c, devices/gdevsvga.h, devices/gdevvglb.c.

7.4. File roadmap 117

Ghostscript Documentation, Release 10.03.1

Window system drivers

X Windows:
devices/gdevx.c, devices/gdevx.h, devices/gdevxalt.c, devices/gdevxcmp.c, devices/gdevxcmp.h, de-
vices/gdevxini.c, devices/gdevxres.c.

Microsoft Windows:
devices/gdevmswn.c, devices/gdevmswn.h, devices/gdevmsxf.c, devices/gdevwddb.c, devices/gdevwdib.c.

0OS/2 Presentation Manager:
devices/gdevpm.h, base/gspmdrv.c, base/gspmdrv.h.

Raster file output drivers

Fax and TIFF:
devices/gdevfax.c, devices/gdevfax.h, devices/gdevtfax.c, devices/gdevtfax.h, devices/gdevtifs.c, de-
vices/gdevtifs.h, devices/gdevtfnx.c. devices/gdevtsep.c.

Example DeviceN devices:
base/gdevdevn.c, base/gdevdevn.h, devices/gdevxct.c, devices/gdevpsd.c, devices/gdevperm.c.

Other raster file formats:
devices/gdevbit.c, devices/gdevbmp.c, devices/gdevbmp.h, devices/gdevbmpa.c, devices/gdevbmpc.c, de-
vices/gdevjpeg.c, devices/gdevmiff.c, devices/gdevp2up.c, devices/gdevpcx.c, devices/gdevpbm.c, de-
vices/gdevpng.c, devices/gdevpsim.c.

Printer drivers

Operating system printer services:
devices/gdevos2p.c, devices/gdevwpr2.c, devices/gdevwprn.c.

H-P monochrome printers:
devices/gdevdljm.c, devices/gdevdljm.h, devices/gdevdjet.c, devices/gdevlj56.c.

Other printers:
devices/gdevatx.c.

Contributed drivers

This list is likely to be incomplete and inaccurate: see devices/contrib.mak and contrib/contrib.mak.

Display and window system drivers:
devices/gdev3bl.c, devices/gdevherc.c, devices/gdevpe.c, devices/gdevsnfb.c, devices/gdevsun.c.

Raster file output drivers:
devices/gdevcfax.c, devices/gdevcif.c, devices/gdevdfax.c, devices/gdevifno.c, devices/gdevmgr.c, de-
vices/gdevmgr.h, devices/gdevsgi.c, devices/gdevsgi.h, devices/gdevsunr.c, devices/gdevjbig2.c, de-
vices/gdevjpx.c.

Printer drivers:
lib/bj8.rpd, lib/cbjc600.ppd, lib/cbjc800.ppd, devices/gdev3852.c, devices/gdev4081.c, devices/gdev4693.c,
devices/gdev8510.c, devices/gdevadmp.c, devices/gdevbjl0.c, devices/gdevbjc.h, devices/gdevbijcl.c,

118 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

devices/gdevbjcl.h, devices/gdevcer.c, devices/gdevedj.c, devices/gdevclj.c, devices/gdevcljc.c, de-
vices/gdevcslw.c, devices/gdevdjtc.c, devices/gdevdm?24.c, devices/gdevepsc.c, devices/gdevepsn.c, de-
vices/gdevescp.c, devices/gdevhl7x.c, devices/gdevijs.c, devices/gdevimgn.c, devices/gdevl3ls.c, de-
vices/gdevlbp8.c, devices/gdevlp8k.c, devices/gdevlxm.c, devices/gdevn533.c, devices/gdevol82.c,
devices/gdevokii.c, devices/gdevpcl.c, devices/gdevpclh, devices/gdevphex.c, devices/gdevpjet.c, de-
vices/gdevsj48.c, devices/gdevsppr.c, devices/gdevstc.c, devices/gdevstc.h, devices/gdevstcl.c, de-
vices/gdevstc2.c, devices/gdevstc3.c, devices/gdevstc4.c, devices/gdevtknk.c, devices/gdevupd.c.

The special rinkj high-quality inkjet driver:
devices/gdevrinkj.c, base/gsequivc.c, base/gsequivc.h, devices/rinkj/evenbetter-rll.c, devices/rinkj/evenbetter-
rllLh, devices/rinkj/rinkj-byte-stream.c, devices/rinkj/rinkj-byte-stream.h, devices/rinkj/rinkj-config.c,
devices/rinkj/rinkj-config.h, devices/rinkj/rinkj-device.c, devices/rinkj/rinkj-device.h, devices/rinkj/rinkj-
dither.c, devices/rinkj/rinkj-dither.h, devices/rinkj/rinkj-epson870.c, devices/rinkj/rinkj-epson870.h,
devices/rinkj/rinkj-screen-eb.c, devices/rinkj/rinkj-screen-eb.h, lib/rinkj-2200-setup.

7.4.4 PostScript interpreter

The PostScript interpreter is conceptually simple: in fact, an interpreter that could execute “3 4 add =" and print “7”
was running 3 weeks after the first line of Ghostscript code was written. However, a number of considerations make
the code large and complex.

The interpreter is designed to run in environments with very limited memory. The main consequence of this is that it
cannot allocate its stacks (dictionary, execution, operand) as ordinary arrays, since the user-specified stack size limit
may be very large. Instead, it allocates them as a linked list of blocks. See below for more details.

The interpreter must never cause a C runtime error that it cannot trap. Unfortunately, C implementations almost never
provide the ability to trap stack overflow. In order to put a fixed bound on the C stack size, the interpreter never
implements PostScript recursion by C recursion. This means that any C code that logically needs to call the interpreter
must instead push a continuation (including all necessary state information) on the PostScript execution stack, followed
by the PostScript object to be executed, and then return to the interpreter. (See psi/estack.h for more details about
continuations.) Unfortunately, since PostScript Level 2 introduces streams whose data source can be a PostScript
procedure, any code that reads or writes stream data must be prepared to suspend itself, storing all necessary state in a
continuation. There are some places where this is extremely awkward, such as the scanner/parser.

The use of continuations affects many places in the interpreter, and even some places in the graphics library. For
example, when processing an image, one may need to call a PostScript procedure as part of mapping a CIE color to a
device color. Ghostscript uses a variety of dodges to handle this: for example, in the case of CIE color mapping, all
of the PostScript procedures are pre-sampled and the results cached. The Adobe implementation limits this kind of
recursion to a fixed number of levels (5?): this would be another acceptable approach, but at this point it would require
far more code restructuring than it would be worth.

A significant amount of the PostScript language implementation is in fact written in PostScript. Writing in PostScript
leverages the C code for multi-threading, garbage collection, error handling, continuations for streams, etc., etc.; also,
we have found PostScript in general more concise and easier to debug than C, mostly because of memory management
issues. So given the choice, we tended to implement a feature in PostScript if it worked primarily with PostScript data
structures, wasn’t heavily used (example: font loading), or if it interacted with the stream or other callback machinery
(examples: ReusableFileDecode streams, resourceforall). Often we would add non-standard PostScript operators for
functions that had to run faster or that did more C-like things, such as the media matching algorithm for setpagedevice.

7.4. File roadmap 119

Ghostscript Documentation, Release 10.03.1

Main program

The main program of the interpreter is normally invoked from the command line, but it has an API as well. In fact,
it has two APIs: one that recognizes the existence of multiple “interpreter instances” (although it currently provides
a default instance, which almost all clients use), and a completely different one designed for Windows DLLs. These
should be unified as soon as possible, since there are two steadily growing incompatible bodies of client code.

Files:
psi/gs.c, psi/gserver.c, psi/iinit.c, psi/iinit.h, psi/imain.c, psi/imain.h, psi/imainarg.c, psi/imainarg.h, psi/iminst.h,
psi/main.h.

Data structures

The main data structures visible to the PostScript programmers are arrays, contexts, dictionaries, names, and stacks.
Arrays have no unusual properties. See under Refs below for more information about how array elements are stored.

Contexts are used to hold the interpreter state even in configurations that don’t include the Display PostScript multiple
context extension. Context switching is implemented by a complex cooperation of C and PostScript code.

Dictionaries have two special properties worth noting:
They use an optimized storage representation if all the keys are names, which is almost always the case.
They interact with a caching scheme used to accelerate name lookup in the interpreter.

Names are allocated in blocks. The characters and hash chains are stored separately from the lookup cache information,
so that in the future, most of the former can be compiled into the executable and shared or put in ROM. (This is not
actually done yet.)

Contexts:
psi/icontext.c, psi/icontext.h, psi/icstate.h.

Dictionaries:
psi/iddict.h, psi/idict.h, psi/idict.c, psi/idictdef.h, psi/idicttpl.h.

Names:
psi/iname.c, psi/iname.h, psi/inamedef.h, psi/inameidx.h, psi/inames.h, psi/inamestr.h.

Stacks

As mentioned above, each stack is allocated as a linked list of blocks. However, for reasonable performance, operators
must normally be able to access their operands and produce their results using indexing rather than an access procedure.
This is implemented by ensuring that all the operands of an operator are in the topmost block of the stack, using guard
entries that cause an internal error if the condition isn’t met. See psi/iostack.h for more details.

Generic stacks:
psi/isdata.h, psi/istack.c, psi/istack.h, psi/istkparm.h.

Specific stacks:

Dictionary stack:
psi/dstack.h, psi/iddstack.h, psi/idsdata.h, psi/idstack.c, psi/idstack.h.

Execution stack:
psi/estack.h, psi/iesdata.h, psi/iestack.h.

Operand stack:
psi/iosdata.h, psi/iostack.h, psi/ostack.h.

120 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

Interpreter loop

Files:

psi/interp.c, psi/interp.h.

Scanning/parsing

PostScript parsing consists essentially of token scanning, and is simple in principle. The scanner is complex because it
must be able to suspend its operation at any time (i.e., between any two input characters) to allow an interpreter callout,
if its input is coming from a procedure-based stream and the procedure must be called to provide more input data.

Main scanner:

psi/iscan.c, psi/iscan.h, psi/iscannum.c, psi/iscannum.h, base/scanchar.h, base/scantab.c.

Binary tokens:

psi/btoken.h, psi/ibnum.c, psi/ibnum.h, psi/inobtokn.c, psi/iscanbin.c, psi/iscanbin.h.

DSC parsing:

psi/dscparse.c, psi/dscparse.h.

Standard operators

Non-output-related:

Filters:
psi/ifilter.h, psi/ifilter2.h, psi/ifrpred.h, psi/ifwpred.h, psi/istream.h, psi/zfbcp.c, psi/zfdctd.c, psi/zfdcte.c,
psi/zfdecode.c, psi/zfilter.c, psi/zfilter2.c, psi/zfjbig2.c, psi/zfjpx.c, psi/zfmdS5.c, psi/zfarc4.c, psi/zfproc.c,
psi/zfrsd.c, psi/zfzlib.c.

File and stream 1/O:
psi/files.h, psi/itoken.h, psi/zbseq.c, psi/zdscpars.c, psi/zfile.h, psi/zfile.c, psi/zfilel.c, psi/zfileio.c,
psi/ztoken.c.

Data structures:
psi/zarray.c, psi/zdict.c, psi/zgeneric.c, psi/zpacked.c, psi/zstring.c.

Functions:
psi/ifunc.h, psi/zfunc.c, psi/zfuncO.c, psi/zfunc3.c, psi/zfunc4.c,

Other:
psi/ivmem?2.h, psi/zalg.c, psi/zarith.c, psi/zcontext.c, psi/zcontrol.c, psi/zmath.c, psi/zmatrix.c, psi/zmisc.c,
psi/zmiscl.c, psi/zmisc2.c, psi/zmisc3.c, psi/zrelbit.c, psi/zstack.c, psi/ztype.c, psi/zusparam.c,
psi/zvmem.c, psi/zvmem?2.c.

Output-related:

Device management:
psi/zdevcal.c, psi/zdevice.c, psi/zdevice2.c, psi/ziodev.c, psi/ziodev2.c, psi/ziodevs.c, psi/zmedia2.c,

Fonts and text:
psi/bfont.h, psifichar.h, psificharl.h, psi/icharout.h, psificid.h, psif/ifcid.h, psi/ifont.h, psi/ifontl.h,
psi/ifont2.h, psi/ifont42.h, psi/zbfont.c, psi/zcfont.c, psi/zchar.c, psi/zcharl.c, psi/zchar2.c, psi/zchar32.c,
psi/zchar42.c, psi/zchard42.h, psi/zcharout.c, psi/zcharx.c, psi/zcid.c, psi/zfcid.c, psi/zfcidO.c,
psi/zfcidl.c, psi/zfcmap.c, psi/zfont.c, psi/zfont0.c, psi/zfontl.c, psi/zfont2.c, psi/zfont32.c, psi/zfont42.c,
psi/zfontenum.c.

A bridge to the True Type bytecode interpreter:
base/gxttfb.c, base/gxttfb.h, base/ttfoutl.h, base/ttfmain.c, base/ttfmemd.c, base/ttfmemd.h, base/ttfinp.c,
base/ttfinp.h.

7.4.

File roadmap 121

Ghostscript Documentation, Release 10.03.1

A reduced True Type bytecode interpreter:
(this is based in part on the work of the Freetype Team and incorporates some code from the FreeType
1 project) base/ttfsfnt.h, base/ttcalc.c, base/ttcalc.h, base/ttcommon.h, base/ttconf.h, base/ttconfig.h,
base/ttinterp.c, base/ttinterp.h, base/ttload.c, base/ttload.h, base/ttmisc.h, base/ttobjs.c, base/ttobjs.h,
base/tttables.h, base/tttype.h, base/tttypes.h.

Color, pattern, and halftone:
psi/icie.h, psi/icolor.h, psi/ficremap.h, psificsmap.h, psi/iht.h, psi/ipcolor.h, psi/zcie.c, psi/zcolor.c,
psi/zcolorl.c, psi/zcolor2.c, psi/zcolor3.c, psi/zcrd.c, psi/zcsindex.c, psi/zcspixel.c, psi/zcssepr.c,
psi/zicc.c, psi/zht.c, psi/zhtl.c, psi/zht2.h, psi/zht2.c, psi/zpcolor.c, psi/zshade.c, psi/ztrans.c.

Images:
psi/iimage.h, psi/zimage.c, psi/zimage3.c, psi/zfimscale.c.

Other graphics:
psi/igstate.h, psi/zdpnext.c, psi/zdps.c, psi/zdpsl.c, psi/zgstate.c, psi/zpaint.c, psi/zpath.c, psi/zpathl.c,
psi/ztrap.c, psi/zupath.c.

Operator support:
psi/oparc.h, psi/opcheck.h, psi/opdef.h, psi/oper.h, psi/opextern.h.

Non-standard operators

The interpreter includes many non-standard operators. Most of these provide some part of the function of a standard
operator, so that the standard operator itself can be implemented in PostScript: these are not of interest to users, and
their function is usually obvious from the way they are used. However, some non-standard operators provide access to
additional, non-standard facilities that users might want to know about, such as transparency, RasterOp, and in-memory
rendering. These are documented at Additional Operators.

We don’t document the complete set of non-standard operators here, because the set changes frequently. However,
all non-standard operators are supposed to have names that begin with ‘., so you can find them all by executing the
following (Unix) command:

grep '{".[.]1' psi/[zi]*.c

In addition to individual non-standard operators implemented in the same files as standard ones, there are several
independent optional packages of non-standard operators. As with other non-standard operators, the names of all the
operators in these packages begin with ‘.”. We list those packages here.

psi/zdouble.c
Provides “double” floating point arithmetic, using 8-byte strings to hold values. Developed under a contract;
probably used only by the group that funded the development.

psi/zfsample.c,
Provides a special operator to sample a given function and create a new type 0 function.

psi/zsysvm.c
Provides operators for allocating objects in specific VM spaces, disregarding the current VM mode.

122 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

Interpreter support

Memory management (refs, GC, save/restore) — see Postscript Interpreter Extensions.

Font API :
psif/ifapi.h, psi/zfapi.c, base/fapiufst.c, base/fapi_ft.c, base/wrfont.h, base/wrfont.c, base/write_tl.h,
base/write_t1.c, base/write_t2.h, base/write_t2.c,

Miscellaneous support:
psi/ierrors.h, base/gserrors.h, psi/ghost.h, psi/iconf.c, psi/iconf.h, psi/idparam.c, psi/idparam.h, psi/ilevel.h,
psi/inouparm.c, psi/iparam.c, psi/iparam.h, psi/iparray.h, psi/iutil.c, psi/iutilL.h, psi/iutil2.c, psi/iutil2.h,
psi/iplugin.c, psi/iplugin.h.

PostScript code

Initialization and language support:

All configurations:
Resource/Init/gs_init.ps, Resource/Init/gs_statd.ps.

Level 2:
Resource/Init/gs_btokn.ps, Resource/Init/gs_dps1.ps, Resource/Init/gs_dps2.ps, Re-
source/Init/gs_lev2.ps, Resource/Init/gs_res.ps, Resource/Init/gs_resmp.ps, Re-

source/Init/gs_setpd.ps.

LanguageLevel 3:
Resource/Init/gs_frsd.ps, Resource/Init/gs_l13.ps, Resource/Init/gs_trap.ps.

Display PostScript:
Resource/Init/gs_dpnxt.ps, Resource/Init/gs_dps.ps.

Emulation of other interpreters:
Resource/Init/gs_cet.ps (Adobe CPSI).

Color Spaces and support:

Color Space Loading:
Resource/Init/gs_cspace.ps,

ICC color profiles:
Resource/Init/gs_icc.ps.

Font loading and support:

Font name mapping:
Resource/Init/Fontmap, lib/Fontmap.ATB, lib/Fontmap.ATM, Resource/Init/Fontmap.GS,
lib/Fontmap.OS2, lib/Fontmap.OSF, lib/Fontmap.SGI, lib/Fontmap.Sol, lib/Fontmap.Ult,
lib/Fontmap.VMS, lib/Fontmap.URW-136.T1, lib/Fontmap.URW-136.TT, Resource/Init/cidfmap,
Resource/Init/FAPIcidfmap, Resource/Init/FAPIfontmap, Resource/Init/FCOfontmap-PCLPS2.

Generic:
Resource/Init/gs_fonts.ps, Resource/Init/gs_fntem.ps.

Type 1 and CFF:
Resource/Init/gs_cft.ps, Resource/Init/gs_diskf.ps, Resource/Init/gs_typel.ps.

TrueType:
Resource/Init/gs_ttf.ps, Resource/Init/gs_typ42.ps.

7.4. File roadmap 123

Ghostscript Documentation, Release 10.03.1

CID-keyed:

Resource/Init/gs_cidcm.ps, Resource/Init/gs_cidfn.ps, Resource/Init/gs_cmap.ps, Re-
source/Init/gs_ciddc.ps, Resource/Init/gs_cidfm.ps, Resource/Init/gs_cidtt.ps.
Font API:

Resource/Init/gs_fapi.ps, = Resource/Init/FAPIconfig, lib/FAPIconfig-FCO, Resource/Init/xlatmap.
Resource/Init/FCOfontmap-PCLPS2. lib/FCOfontmap-PCLPS3. lib/FCOfontmap-PS3.

Other:
lib/gs_kanji.ps, lib/gs_pfile.ps, Resource/Init/gs_typ32.ps.

Encodings:

Adobe-specified:
lib/gs_ce_e.ps, Resource/Init/gs_dbt_e.ps, Resource/Init/gs_ill_e.ps, Resource/Init/gs_mex_e.ps,

Resource/Init/gs_mro_e.ps, Resource/Init/gs_pdf_e.ps, Resource/Init/gs_std_e.ps, Re-
source/Init/gs_sym_e.ps, Resource/Init/gs_wan_e.ps.
Additional:

lib/gs_il2_e.ps, lib/gs_ksb_e.ps, lib/gs_wl1_e.ps, lib/gs_wl2_e.ps, lib/gs_wl5_e.ps.

Pseudo-encodings for internal use:
lib/gs_lgo_e.ps, lib/gs_lgx_e.ps, Resource/Init/gs_mgl_e.ps.

Miscellaneous:

Image support:
Resource/Init/gs_img.ps,

Emulation of %disk IODevice:
Resource/Init/gs_diskn.ps,

Other support:
Resource/Init/gs_agl.ps, Resource/Init/gs_dscp.ps, Resource/Init/gs_epsf.ps, Resource/Init/gs_pdfwr.ps,
lib/gs_rdlin.ps.

X Windows icon bitmaps:
lib/gs_l.xbm, lib/gs_l.xpm, lib/gs_l_m.xbm, lib/gs_m.xbm, lib/gs_m.xpm, lib/gs_m_m.xbm, lib/gs_s.xbm,
lib/gs_s.xpm, lib/gs_s_m.xbm, lib/gs_t.xbm, lib/gs_t.xpm, lib/gs_t_m.xbm.

PDF/X-3 definition file sample:
lib/PDFX_def.ps

7.4.5 PDF interpreter

Ghostscript’s PDF interpreter is written entirely in PostScript, because its data structures are the same as PostScript’s,
and it is much more convenient to manipulate PostScript-like data structures in PostScript than in C. There is definitely
a performance cost, but apparently not a substantial one: we considered moving the main interpreter loop (read a
token using slightly different syntax than PostScript, push it on the stack if literal, look it up in a special dictionary for
execution if not) into C, but we did some profiling and discovered that this wasn’t accounting for enough of the time to
be worthwhile.

Until recently, there was essentially no C code specifically for the purpose of supporting PDF interpretation. The one
major exception is the PDF 1.4 transparency features, which we (but not Adobe) have made available to PostScript
code.

In addition to patching the run operator to detect PDF files, the interpreter provides some procedures in Re-
source/Init/pdf_main.ps that are meant to be called from applications such as previewers.

124 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

Files:

Resource/Init/pdf_base.ps, Resource/Init/pdf_draw.ps, Resource/Init/pdf_font.ps, Resource/Init/pdf_main.ps,
Resource/Init/pdf_rbld.ps, Resource/Init/pdf_ops.ps, Resource/Init/pdf_sec.ps.

7.4.6 PostScript Printer Description

A PostScript Printer Description tells a generic PostScript printer driver how to generate PostScript for a particular
printer. Ghostscript includes a PPD file for generating PostScript intended to be converted to PDF. A Windows INF
file for installing the PPD on Windows 2000 and XP is included.

Files:

lib/ghostpdf.ppd, lib/ghostpdf.inf, lib/ghostpdf.cat, lib/ghostpdf. README.

7.4.7 Build process

Makefile structure

Ghostscript’s makefiles embody a number of design decisions and assumptions that may not be obvious from a casual
reading of the code.

All files are stored in subdirectories. The names of all subdirectories used in the build process are defined in
the top-level makefiles for the various platforms: there are no “hard wired” directory names in any makefile
rule. Subdirectory names in the makefiles are relative to the directory that is current at build time: normally this
directory is the parent of the various subdirectories, and holds only a makefile, which in turn simply references
the real top-level makefile in the source subdirectory.

All compiler and linker switches are likewise defined by macros, again preferably in the top-level platform make-
file.

There is an absolute distinction between “source-like” subdirectories, which are read-only during the build pro-
cess, and “object-like” subdirectories, all of whose contents are generated by the build process and which can
be emptied (rm *) at any time with no bad effects. The source subdirectories are defined by macros named
xxxSRCDIR.

Object subdirectories may distinguish further between those that hold the results of the build process that are
needed at run time (i.e., that should be included in a run-time distribution), defined by BINDIR, and those that
are not needed at run time, defined by xxxGENDIR and xxxOBJDIR. (The distinction between these is historical
and probably no longer relevant).

There may be multiple object subdirectories for different build configurations. On Unix, the obj and bin directo-
ries are used for normal production builds, the debugobj directory for debugging builds, and the pgobj directory
for profiling builds; other platforms may use different conventions. The Unix makefiles support targets named
debug and pg for debugging and profiling builds respectively; other platforms generally do not.

Makefiles will be maintained by hand. This requires editing the following makefile elements whenever the rele-
vant source files changes:

— Every header (.h) file must have a corresponding macro definition in a makefile. If abc.h #includes

def.h and xyz.h, the definition must have the form:
xyz_h=$(xxxSRCD)xyz.h $(def_h) $(xyz_h)

where xxxSRCD is the macro defining the relevant source directory (including a trailing ‘/’). Note that
the .’ in the file name has been replaced by an underscore. Note also that the definition must follow
all definitions it references, since some make programs expand macros in definitions at the time of
definition rather than at the time of use.

7.4. File roadmap 125

Ghostscript Documentation, Release 10.03.1

— Every .c file must have a corresponding rule in a makefile. If abc.c #includes def.h and Imn.h, the rule must
have approximately the form:

$(xxx0BJD)abc.$(0BJ) : $(xxxSRCD)abc.c $(def_h) $(1mn_h) $(xxCO)
$(xx0_)abc.$(0BJ) $(C_) $(xxxSRCD)abc.c

where xxxSRCD is as before; xxx0BJD is the relevant object directory; xxCC defines the name of
the C compiler plus the relevant compilation switches; and xx0_ and C_ are macros used to bridge
syntactic differences between different make programs.

The requirement to keep makefiles up to date by hand has been controversial. Two alternatives are generally proposed.

* Programs like makedeps, which generate build rules automatically from the #include lists in C files. We have
found such programs useless: they “wire in” specific, concrete directory names, not only for our own code but
even for the system header files; they have to be run manually whenever code files are added, renamed, or deleted,
or whenever the list of #includes in any file changes; and they cannot deal with different source files requiring
different compilation switches.

e MSVC-style “project” files. These are equally useless: they are not portable across different vendors’ tools — in
fact, there may not even be a usable import/export facility to convert their data to or from text form — and they
cannot combine configuration-independent data with configuration-specific data.

We have seriously considered writing our own build program in Tcl or Python that would eliminate these problems, or
perhaps porting the tools developed by Digital’s Vesta research project (if we can get access to them); however, either
of these approaches would create potential portability problems of its own, not to mention difficulties in integrating
with others’ build systems.

For more information about makefiles:

* For a detailed list of makefiles, and a discussion of makefile issues related to portability, see the Makefiles section
below.

* For more detailed information about editing configuration information in makefiles, see Makefiles Overview.
* For a complete example of adding a new driver to a makefile, see Drivers.

* For a few more notes on makefile coding conventions, see C-Style Makefiles.

.dev files

On top of the general conventions just described, Ghostscript’s makefiles add a further layer of structure in order
to support an open-ended set of fine-grained, flexible configuration options. Selecting an option (usually called a
“module”) for inclusion in the build may affect the build in many ways:

* Almost always, it requires linking in some compiled code files.
* It may require running some additional initialization procedures at startup.

* It may require reading in some additional PostScript files at startup. For example, a Level 2 PostScript build
requires support for PostScript resources and for setpagedevice, which are implemented in PostScript code.

* It may require adding entries to a variety of internal tables that catalogue such things as drivers, IODevices,
Function types, etc.

* It may require that other particular modules be included. For example, the “PostScript Level 2” module requires
the modules for various filters, color spaces, etc.

¢ It may require removing some other (default) module from the build. For example, the core (Level 1) PostScript
build has a “stub” for binary tokens, which are a Level 2 feature but are referenced by the core scanner: a Level
2 build must remove the stub. For more information about this, look for the string -replace in the makefiles
and in base/genconf.c.

126 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

Each module is defined in the makefiles by rules that create a file named xxx . dev. The dependencies of the rule include
all the files that make up the module (compiled code files, PostScript files, etc.); the body of the rule creates the .dev
file by writing the description of the module into it. A program called genconf, described in the next section, merges
all the relevant .dev files together. For examples of .dev rules, see any of the Ghostscript makefiles.

Ultimately, a person must specify the root set of modules to include in a build (which of course may require other
modules, recursively). Ghostscript’s makefiles do this with a set of macros called FEATURE_DEVS and DEVICE_DEVSn,
defined in each top-level makefile, but nothing in the module machinery depends on this.

Generators

Ghostscript’s build procedure is somewhat unusual in that it compiles and then executes some support programs during
the build process. These programs then generate data or source code that is used later on in the build.

The most important and complex of the generator programs is genconf. genconf merges all the .dev files that make up
the build, and creates three or more output files used in later stages:

¢ gconfig.h, consisting mainly of macro calls, one call per “resource” making up the build, other than “resources”
listed in the other output files.

e gconfigf.h, produced only for PostScript builds with compiled-in fonts, consisting of one macro call per font.

* A linker control file whose name varies from one platform to another, containing the list of compiled code files
to be linked.

* If necessary, another linker control file, also varying between platforms, that contains other information for the
linker such as the list of system libraries to be searched. (On Unix platforms, the two linker control functions are
combined in a single file).

Source generators:

base/genarch.c
Creates a header file containing a variety of information about the hardware and compiler that isn’t provided
in any standard system header file. Always used.

base/genconf.c (also generates non-source)
Constructs header files and linker control files from the collection of options and modules that make up the
build. See above. Always used.

base/genht.c
Converts a PostScript halftone (in a particular constrained format) to a C data structure that can be compiled
into an executable. Only used if any such halftones are included in the build.

base/mkromfs.c
Takes a set of directories, and creates a compressed filesystem image that can be compiled into the ex-
ecutable as static data and accessed through the %rom% iodevice prefix. This is used to implement the
COMPILE_INITS=1 feature (a compressed init fileset is more efficient than the current ‘gsinit.c’ produced
by ‘geninit.c’). This IODevice is more versatile since other files can be encapsulated such as fonts, helper
PostScript files and Resources. The list of files is defined in part in psi/psromfs.mak.

Other generators:

base/echogs.c
Implements a variety of shell-like functions to get around quirks, limitations, and omissions in the shells
on various platforms. Always used.

base/genconf.c (also generates source)
See above.

base/gendev.c (not used)
Was intended as a replacement for genconf, but was never completed.

7.4. File roadmap 127

Ghostscript Documentation, Release 10.03.1

Support

There are a number of programs, scripts, and configuration files that exist only for the sake of the build process.

Files for PC environments:
base/gswin.icx, base/gswinl6.icx, base/bcc32.cfg, base/cp.bat, base/cp.cmd, psi/dw32c.def, psi/dwmain.rc,
psi/dwmain32.def, psi/dwsetup.def, psi/dwsetup_x86.manifest, psi/dwsetup_x64.manifest, psi/dwuninst.def,
psi/dwuninst_x86.manifest, psi/dwuninst_x64.manifest, psi/gsdll2.def, psi/gsdll2.rc, psi/gsdll32.def,
psi/gsdll32.rc, psi/gsdll32w.Ink, psi/gsos2.def, psi/gsos2.icx, psi/gsos2.rc, base/gspmdrv.def, base/gspmdrv.icx,
base/gspmdrv.rc, base/gswin.rc, base/gswin32.rc, base/mv.bat, base/mv.cmd, base/rm.bat, base/rm.cmd,

Files for MacOS:
lib/Info-macos.plist.

Files for OpenVMS:
base/append_l.com, base/copy_one.com, base/rm_all.com, base/rm_one.com.

Other files:
base/bench.c, base/catmake, base/instcopy.

7.4.8 Utilities

Ghostscript comes with many utilities for doing things like viewing bitmap files and converting between file formats.
Some of these are written in PostScript, some as scripts, and some as scripts that invoke special PostScript code.

Utilities in PostScript

These are all documented in doc/Psfiles.html, g.v.

Utility scripts

Many of these scripts come in both Unix and MS-DOS (.bat versions; some also have an OS/2 (.cmd) version. The
choice of which versions are provided is historical and irregular. These scripts should all be documented somewhere,
but currently, many of them have man pages, a few have their own documentation in the doc directory, and some aren’t
documented at all.

Script files without PC versions:
lib/afmdiff.awk, lib/dvipdf, lib/lprsetup.sh, lib/pphs, lib/printafm, lib/unix-lpr.sh, lib/wftopfa.

Script files with PC versions:

lib/eps2eps, lib/eps2eps.bat, lib/eps2eps.cmd, lib/ps2ps2, lib/ps2ps2.bat, lib/ps2ps2.cmd, lib/font2c,
lib/font2c.bat, lib/font2c.cmd, lib/gsbj, lib/gsbj.bat, lib/gsdj, lib/gsdj.bat, lib/gsdjS00, 1ib/gsdj500.bat, lib/gslj,
lib/gslj.bat, lib/gslp, lib/gslp.bat, lib/gsnd, lib/gsnd.bat, lib/pdf2dsc, lib/pdf2dsc.bat, lib/pdf2ps, lib/pdf2ps.bat,
lib/pdf2ps.cmd, lib/pf2afm, lib/pf2afm.bat, lib/pf2afm.cmd, lib/pfbtopfa, lib/pfbtopfa.bat, lib/ps2ascii,
lib/ps2ascii.bat, lib/ps2ascii.cmd, lib/ps2epsi, lib/ps2epsi.bat, lib/ps2epsi.cmd, lib/ps2pdf, lib/ps2pdf.bat,
lib/ps2pdf.cmd, lib/ps2pdfl12, lib/ps2pdfl2.bat, lib/ps2pdfl2.cmd, lib/ps2pdfl13, lib/ps2pdfl3.bat,
lib/ps2pdf13.cmd, lib/ps2pdf14, lib/ps2pdf14.bat, lib/ps2pdf14.cmd, lib/ps2pdfwr, lib/ps2pdfxx.bat, lib/ps2ps,
lib/ps2ps.bat, 1ib/ps2ps.cmd.

Script files with only PC versions:
lib/gsndt.bat, lib/gssetgs.bat, lib/gssetgs32.bat, lib/gssetgs64.bat, lib/gst.bat, lib/gstt.bat, 1ib/Ip386.bat,
lib/p386r2.bat, lib/lpgs.bat, lib/Ipr2.bat, lib/pftogsf.bat, lib/wmakebat.bat.

128 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

7.5 Memory management

7.5.1 Memory manager architecture
In many environments, the memory manager is a set of library facilities that implicitly manage the entire address space
in a homogenous manner. Ghostscript’s memory manager architecture has none of these properties:

 Rather than a single library accessed as procedures, Ghostscript includes multiple allocator types, each of which
in turn may have multiple instances (allocators). Allocators are ‘objects’ with a substantial set of virtual functions.

» Rather than managing the entire address space, each allocator manages a storage pool, which it may or may not
be able to expand or reduce by calling on a ‘parent’ allocator.

 Rather than a single genus of untyped storage blocks, Ghostscript’s allocators provide two genera — type-tagged
‘objects’, and ‘strings’ — with substantially different properties.

Objects vs strings

As noted above, allocators provide two different storage genera.
Objects:
* Are aligned in storage to satisfy the most stringent alignment requirement imposed by the CPU or compiler;

» Can be referenced only by pointers to their start, not to any internal location, unless special arrangements are
made;

* May contain pointers to other objects, or to strings;

» Have an associated structure descriptor that specifies their size (usually) and the location of any pointers contained
within them.

Given a pointer to an object, the allocator that allocated it must be able to return the object’s size and the pointer to its
structure descriptor. (It is up to the client to know what allocator allocated an object.)
Strings:

* Are not aligned in storage;

* Can be referenced by pointers (consisting of a starting address and a length) to any substring, starting anywhere
within the string;

* May not contain pointers;
* Do not have a structure descriptor.

The object/string distinction reflects a space/capability tradeoff. The per-object space overhead of the standard type of
allocator is typically 12 bytes; this is too much to impose on every string of a few bytes. On the other hand, restricting
object pointers to reference the start of the object currently makes object garbage collection and compaction more
space-efficient. If we were to redesign the standard allocator, we would probably opt for a different design in which
strings were allocated within container objects of a few hundred bytes, and pointers into the middle of all objects were
allowed.

7.5. Memory management 129

Ghostscript Documentation, Release 10.03.1

Structure descriptors

Every object allocated by a Ghostscript allocator has an associated structure descriptor, which the caller provides when
allocating the object. The structure descriptor serves several purposes:

 Specifying the size of the object for allocation;
* Providing pointer-enumeration and pointer-relocation procedures for the garbage collector;

* Providing an optional finalization procedure to be called when the object is freed (either explicitly or automati-
cally).

Structure descriptors are read-only, and are normally defined statically using one of the large set of gs_private_st_
or gs_public_st_ macros in base/gsstruct.h.

While the structure descriptor normally specifies the size of the object, one can also allocate an array of bytes or objects,
whose size is a multiple of the size in the descriptor. For this reason, every object stores its size as well as a reference
to its descriptor.

Because the standard Ghostscript garbage collector is non-conservative and can move objects, every object allocated by
a Ghostscript allocator must have an accurate structure descriptor. If you define a new type of object (structure) that will
be allocated in storage managed by Ghostscript, you must create an accurate descriptor for it, and use that descriptor
to allocate it. The process of creating accurate descriptors for all structures was long and painful, and accounted for
many hard-to-diagnose bugs.

By convention, the structure descriptor for structure type xxx_t is named st_xxx (this is preferred), or occasionally
st_xxx_t.

Note that a structure descriptor is only required for objects allocated by the Ghostscript allocator. A structure type
xxx_t does not require a structure descriptor if instances of that type are used only in the following ways:

* Instances are allocated only on the C stack, e.g., as xxx_t, xxx1, xxx2;, or on the C heap, with malloc or through
the Ghostscript “wrapper” defined in base/gsmalloc.h.

* Pointers to instances are not stored in places where the garbage collector will try to trace the pointer.
» Code never attempts to get the structure type or size of an instance through the allocator API.

In general, structures without descriptors are problem-prone, and are deprecated; in new code, they should only be used
if the structure is confined to a single .c file and its instances are only allocated on the C stack.

Files:
base/gsstruct.h, base/gsstype.h.

Garbage collection

The allocator architecture is designed to support compacting garbage collection. Every object must be able to enumerate
all the pointers it contains, both for tracing and for relocation. As noted just above, the structure descriptor provides
procedures that do this.

Whether or not a particular allocator type actually provides a garbage collector is up to the allocator: garbage col-
lection is invoked through a virtual procedure. In practice, however, there are only two useful garbage collectors for
Ghostscript’s own allocator:

» The “real” garbage collector associated with the PostScript interpreter, described below;
* A “non” garbage collector that only merges adjacent free blocks.

As noted above, because the architecture supports compacting garbage collection, a “real” garbage collector cannot be
run at arbitrary times, because it cannot reliably find and relocate pointers that are on the C stack. In general, it is only
safe to run a “real” garbage collector when control is at the top level of the program, when there are no pointers to
garbage collectable objects from the stack (other than designated roots).

130 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

Files:
base/gsgc.h, base/gsnogc.c, base/gsnogc.h.

Movability

As just noted, objects are normally movable by the garbage collector. However, some objects must be immovable,
usually because some other piece of software must retain pointers to them. The allocator API includes procedures
for allocating both movable (default) and immovable objects. Note, however, that even immovable objects must be
traceable (have a structure descriptor), and may be freed, by the garbage collector.

Parent hierarchy

When an allocator needs to add memory to the pool that it manages, it requests the memory from its parent allocator.
Every allocator has a pointer to its parent; multiple allocators may share a single parent. The ultimate ancestor of all
allocators that can expand their pool dynamically is an allocator that calls malloc, described below. However, especially
in embedded environments, an allocator may be limited to a fixed-size pool assigned to it when it is created.

Allocator API

In summary, the allocator API provides the following principal operations:
¢ Allocate and free movable (default) or immovable objects and strings.
* Return the structure type and size of an object.
* Resize (shrink or grow) movable objects and strings, preserving the contents insofar as possible.
* Report the size of the managed pool, and how much of it is in use.
 Register and unregister root pointers for the garbage collector.
* Free the allocator itself.
» Consolidate adjacent free blocks to reduce fragmentation.
For details, see base/gsmemory.h.

The allocator API also includes one special hook for the PostScript interpreter: the concept of stable allocators. See
the section on “save and restore” below for details.

Files:
base/gsmemraw.h, base/gsmemory.c, base/gsmemory.h, base/gsstruct.h, base/gsstype.h.

7.5.2 Freeing storage

Ghostscript’s memory management architecture provides three different ways to free objects: explicitly, by reference
counting, or by garbage collection. They provide different safety / performance / convenience tradeoffs; we believe that
all three are necessary.

Objects are always freed as a whole; strings may be freed piecemeal.

An object may have an associated finalization procedure, defined in the structure descriptor. This procedure is called
just before the object is freed, independent of which method is being used to free the object. A few types of objects
have a virtual finalization procedure as well: the finalization procedure defined in the descriptor simply calls the one
in the object.

7.5. Memory management 131

Ghostscript Documentation, Release 10.03.1

Explicit freeing
Objects and strings may be freed explicitly, using the gs_free_ virtual procedures in the allocator APL. It is up to the
client to ensure that all allocated objects are freed at most once, and that there are no dangling pointers.

Explicit freeing is the fastest method, but is the least convenient and least safe. It is most appropriate when storage is
freed in the same procedure where it is allocated, or for storage that is known to be referenced by only one pointer.

Reference counting

Objects may be managed by reference counting. When an object is allocated, its reference count may be set to O or 1.
Subsequently, when the reference count is decremented to 0, the object is freed.

The reference counting machinery provides its own virtual finalization procedure for all reference-counted objects. The
machinery calls this procedure when it is about to free the object (but not when the object is freed in any other way,
which is probably a design bug). This is in addition to (and called before) any finalization procedure associated with
the object type.

Reference counting is as fast as explicit freeing, but takes more space in the object. It is most appropriate for relatively
large objects which are referenced only from a small set of pointers. Note that reference counting cannot free objects
that are involved in a pointer cycle (e.g., A -> B -> C -> A).

Files:
base/gsrefct.h.

(Real) garbage collection

Objects and strings may be freed automatically by a garbage collector. See below.

7.5.3 Special implementations

malloc

As mentioned above, the ultimate ancestor of all allocators with an expandable pool is one that calls malloc.

Note that the default gsmalloc.c allocator for malloc/free now uses a mutex so that allocators that use this can be assured
of thread safe behavior.

Files:
base/gsmalloc.h, base/gsmalloc.c.

Locking

In a multi-threaded environment, if an allocator must be callable from multiple threads (for example, if it is used to
allocate structures in one thread that are passed to, and freed by, another thread), the allocator must provide mutex
protection. Ghostscript provides this capability in the form of a wrapper allocator, that simply forwards all calls to a
target allocator under protection of a mutex. Using the wrapper technique, any allocator can be made thread-safe.

Files:
base/gsmemlok.h, base/gsmemlok.c.

132 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

Retrying

In an embedded environment, job failure due to memory exhaustion is very undesirable. Ghostscript provides a wrapper
allocator that, when an allocation attempt fails, calls a client-provided procedure that can attempt to free memory, then
ask for the original allocation to be retried. For example, such a procedure can wait for a queue to empty, or can free
memory occupied by caches.

Files:
base/gsmemret.h, base/gsmemret.c.

Chunk

When multiple threads are used and there may be frequent memory allocator requests, mutex contention is a problem
and can cause severe performance degradation. The chunk memory wrapper can provide each thread with its own
instance of an allocator that only makes requests on the underlying (non-GC) alloctor when large blocks are needed.
Small object allocations are managed within chunks.

This allocator is intended to be used on top of the basic ‘gsmalloc’ allocator (malloc/free) which is NOT garbage
collected or relocated and which MUST be mutex protected.

Files:
base/gsmchunk.h, base/gsmchunk.c.

7.5.4 Standard implementation

The standard Ghostscript allocator gets storage from its parent (normally the malloc allocator) in large blocks called
clumps, and then allocates objects up from the low end and strings down from the high end. Large objects or strings
are allocated in their own clump.

The standard allocator maintains a set of free-block lists for small object sizes, one list per size (rounded up to the word
size), plus a free-block list for large objects (but not for objects so large that they get their own clump: when such an
object is freed, its chunk is returned to the parent). The lists are not sorted; adjacent blocks are only merged if needed.

While the standard allocator implements the generic allocator API, and is usable with the library alone, it includes a
special hook for the PostScript interpreter to aid in the efficient allocation of PostScript composite objects (arrays and
dictionaries). See the section on Refs below for details.

Files:
base/gsalloc.c, base/gsalloc.h, base/gxalloc.h, base/gxobj.h.

7.5.5 PostScript interpreter extensions

The PostScript interpreter uses an allocator that extends the graphic library’s standard allocator to handle PostScript
objects, save and restore, and real garbage collection.

7.5. Memory management 133

Ghostscript Documentation, Release 10.03.1

Refs (PostScript “objects”)

Ghostscript represents what the PLRM calls PostScript “objects” using a structure called a ref, defined in psi/iref.h;
packed refs, used for the elements of packed arrays, are defined in psi/ipacked.h. See those files for detailed information.

Files:
psi/ipacked.h, psi/iref.h.

The PLRM calls for two types of “virtual memory” (VM) space: global and local. Ghostscript adds a third space,
system VM, whose lifetime is an entire session — i.e., it is effectively “permanent”. All three spaces are subject to
garbage collection. There is a separate allocator instance for each VM space (actually, two instances each for global
and local spaces; see below). In a system with multiple contexts and multiple global or local VMs, each global or local
VM has its own allocator instance(s).

Refs that represent PostScript composite objects, and therefore include pointers to stored data, include a 2-bit VM
space tag to indicate in which VM the object data are stored. In addition to system, global, and local VM, there is a tag
for “foreign” VM, which means that the memory is not managed by a Ghostscript allocator at all. Every store into a
composite object must check for invalidaccess: the VM space tag values are chosen to help make this check efficient.
See psi/ivmspace.h, psi/iref.h, and psi/store.h for details.

Files:
psi/ivmspace.h.

PostScript composite objects (arrays and dictionaries) are usually small. Using a separate memory manager object for
each composite object would waste a lot of space for object headers. Therefore, the interpreter’s memory manager
packs multiple composite objects (also called “ref-containing objects”) into a single memory manager object, similar
to the way the memory manager packs multiple objects into a clump (see above). See base/gxalloc.h for details. This
memory manager object has a structure descriptor, like all other memory manager objects.

Note that the value.pdict, value.refs, or value.packed member of a ref must point to a PostScript composite object, and
therefore can point into the middle of a memory manager object. This requires special handling by the garbage collector

(q.v.).

Files:
psifialloc.c, psifialloc.h, psi/fiastate.h, psifiastruct.h, psifilocate.c, psi/imemory.h, psi/istruct.h.
save/.forgetsave/restore

In addition to save and restore, Ghostscript provides a .forgetsave operator that makes things as though a given save had
never happened. (In data base terminology, save is “begin transaction”, restore is “abort transaction”, and .forgetsave
is “end/commit transaction”). .forgetsave was implemented for a specific commercial customer (who may no longer
even be using it): it was a pain to make work, but it’s in the code now, and should be maintained. See the extensive
comments in psi/isave.c for more information about how these operations work.

Files:
psi/idosave.h, psi/isave.c, psi/isave.h, psi/isstate.h, psi/store.h.

Stable allocators

Even though save and restore are concepts from the PostScript interpreter, the generic allocator architecture and API
include a feature to support them, called stable allocators. Every allocator has an associated stable allocator, which
tags pointers with the same VM space number but which is not subject to save and restore. System VM is intrinsically
stable (its associated stable allocator is the same allocator), so there are only 5 allocators in ordinary single-context
usage: system VM, stable global VM, ordinary global VM, stable local VM, ordinary local VM.

The reason that we cannot simply allocate all stable objects in system VM is that their refs must still be tagged with
the correct VM space number, so that the check against storing pointers from global VM to local VM can be enforced

properly.

134 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

All PostScript objects are normally allocated with the non-stable allocators. The stable allocators should be used with
care, since using them can easily create dangling pointers: if storage allocated with a stable allocator contains any
references to PostScript objects, the client is responsible for ensuring that the references don’t outlive the referenced
objects, normally by ensuring that any such referenced objects are allocated at the outermost save level.

The original reason for wanting stable allocators was the PostScript stacks, which are essentially PostScript arrays but
are not subject to save and restore. Some other uses of stable allocators are:

 Several per-context structures for DPS.
* Paths (see gstate_path_memory in base/gsstate.c.

* Row buffers for images (see gs_image_row_memory in base/gsimage.c), because the data-reading procedure for
an image can invoke save and restore.

* Notification lists for fonts, to handle the sequence allocate .. save .. register .. restore.

* The parameter lists for pdfwrite and epswrite devices (in devices/vector/gdevpsdp.c), because the whole issue of
local vs. global VM for setpagedevice is, in the words of Ed Taft of Adobe, “a mess”.

* Many places in the pdfwrite driver, because many of its bookkeeping structures must not be restorable.

For more specific examples, search the sources for references to gs_memory_stable.

Garbage collection

The interpreter’s garbage collector is a compacting, non-conservative, mark-and-sweep collector.

It compacts storage because that is the only way to avoid permanent sandbars, which is essential in limited-
memory environments.

« It is non-conservative because conservative collectors (which attempt to determine whether arbitrary bit patterns
are pointers) cannot compact.

* It uses mark-and-sweep, rather than a more modern copying approach, because it cannot afford the extra memory
required for copying.

Because the garbage collector is non-conservative, it cannot be run if there are any pointers to movable storage from
the C stack. Thus it cannot be run automatically when the allocator is unable to allocate requested space. Instead, when
the allocator has allocated a given amount of storage (the vim_threshold amount, corresponding to the PostScript
VMThreshold parameter), it sets a flag that the interpreter checks in the main loop. When the interpreter sees that this
flag is set, it calls the garbage collector: at that point, there are no problematic pointers from the stack.

Roots for tracing must be registered with the allocator. Most roots are registered during initialization.
“Mark-and-sweep” is a bit of a misnomer. The garbage collector actually has 5 main phases:

* Sweep to clear marks;

¢ Trace and mark;

* Sweep to compute relocation;

» Sweep to relocate pointers;

* Sweep and compact.

There is some extra complexity to handle collecting local VM only. In this case, all pointers in global VM are treated
as roots, and global VM is not compacted.

As noted above, PostScript arrays and strings can have refs that point within them (because of getinterval). Thus
the garbage collector must mark each element of an array, and even each byte of a string, individually. Specifically, it
marks objects, refs, and strings using 3 different mechanisms:

7.5. Memory management 135

Ghostscript Documentation, Release 10.03.1

* Objects have a mark bit in their header: see base/gxobj.h,

* Refs and packed refs have a reserved mark bit: see psi/iref.h and psi/ipacked.h.

 Strings use a separate bit table, with one bit per string byte: see base/gxalloc.h,
Similarly, it records the relocation information for objects, refs, and strings differently:

* Objects record relocation in the object header.

* Refs record relocation in unused fields of refs such as nulls that don’t use their value field. Every memory
manager object that stores ref-containing objects as described above has an extra, unused ref at the end for this
purpose.

* Strings use a separate relocation table.

Files:
psi/ige.c, psifige.h, psi/igeref.c, psi/igestr.c, psi/igestr.h, psi/ireclaim.c.

7.5.6 Portability

One of Ghostscript’s most important features is its great portability across platforms (CPUs, operating systems, com-
pilers, and build tools). The code supports portability through two mechanisms:

e Structural mechanisms — segregating platform-dependent information into files in a particular way.

e Coding standards — avoiding relying on byte order, scalar size, and platform-specific compiler or library features.

Structural mechanisms

CPU and compiler

Ghostscript attempts to discover characteristics of the CPU and compiler automatically during the build process, by
compiling and then executing a program called genarch. genarch generates a file obj/arch.h, which almost all
Ghostscript files then include. This works well for things like word size, byte order, and floating point representa-
tion, but it can’t determine whether or not a compiler supports a particular feature, because if a feature is absent, the
compilation may fail.

Files:
base/genarch.c, obj/arch.h.

Library headers

Despite the supposed standardization of ANSI C, platforms vary considerably in where (and whether) they provide
various standard library facilities. Currently, Ghostscript’s build process doesn’t attempt to sort this out automatically.
Instead, for each library header file <xxx .h> there is a corresponding Ghostscript source file base/xxx_.h, containing
a set of compile-time conditionals that attempt to select the correct platform header file, or in some cases substitute
Ghostscript’s own code for a missing facility. You may need to edit these files when moving to platforms with unusually
non-standard libraries.

Files:
base/ctype_.h, base/dirent_.h, base/dos_.h, base/errno_.h, base/fcntl_.h, base/jerror_.h,
base/malloc_.h, base/math_.h, base/memory_.h, base/pipe_.h, base/png_.h, base/setjmp_.h,
base/stat_.h, base/stdint_.h, base/stdio_.h, base/string_.h, base/time_.h, base/unistd_.h,
base/vmsmath.h, base/windows_.h, base/x_.h

136 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

It has been suggested that the GNU configure scripts do the above better, for Unix systems, than Ghostscript’s current
methods. While this may be true, we have found configure scripts difficult to write, understand, and maintain; and
the autoconf tool for generating configure scripts, which we found easy to use, doesn’t cover much of the ground that
Ghostscript requires.

Cross-platform APIs

For a few library facilities that are available on all platforms but are not well standardized, or that may need to be
changed for special environments, Ghostscript defines its own APIs. It is an architectural property of Ghostscript that
the implementations of these APIs are the only .c files for which the choice of platform (as opposed to choices of drivers
or optional features) determines whether they are compiled and linked into an executable.

API:
base/gp.h, base/gpcheck.h, base/gpgetenv.h, base/gpmisc.h, base/gpsync.h.

Implementation files shared among multiple platforms:
base/gp_getnv.c, base/gp_mktmp.c, base/gp_nsync.c, base/gp_paper.c, base/gp_psync.c, base/gp_strdl.c,
base/gpmisc.c.

Platform-specific implementation files:
base/gp_dosfe.c, base/gp_dosfs.c, base/gp_dvx.c, base/gp_msdos.c, base/gp_mshdl.c, base/gp_mslib.c,
base/gp_mswin.c, base/gp_mswin.h, base/gp_ntfs.c, base/gp_os2.c, base/gp_os2.h, base/gp_os2fs.c,
base/gp_os9.c, base/gp_stdia.c, base/gp_stdin.c, base/gp_unifn.c, base/gp_unifs.c, base/gp_unix.c,
base/gp_unix_cache.c, base/gp_upapr.c, base/gp_vms.c, base/gp_wgetv.c, base/gp_win32.c, base/gp_wpapr.c,
base/gp_wsync.c, base/gs_dll_call.h.

Makefiles

For information on the structure and conventions used within makefiles, see the Makefile structure section above.

Ghostscript’s makefiles are structured very similarly to the cross-platform library files. The great majority of the make-
files are portable across all platforms and all versions of make. To achieve this, the platform-independent makefiles
must obey two constraints beyond those of the POSIX make program:

* No conditionals or includes are allowed. While most make programs now provide some form of conditional
execution and some form of inclusion, there is no agreement on the syntax. (Conditionals and includes are
allowed in platform-dependent makefiles; in fact, an inclusion facility is required.)

* There must be a space on both sides of the : that separates the target of a rule from its dependencies. This is
required for compatibility with the OpenVMS MMS and MMK programs.

The top-level makefile for each platform (where “platform” includes the OS, the compiler, and the flavor of make)
contains all the build options, plus includes for the generic makefiles and any platform-dependent makefiles that are
shared among multiple platforms.

While most of the top-level makefiles build a PostScript and/or PDF interpreter configuration, there are also a few
makefiles that build a test program that only uses the graphics library without any language interpreter. Among other
things, this can be helpful in verifying that no accidental dependencies on the interpreter have crept into the library or
drivers.

For families of similar platforms, the question arises whether to use multiple top-level makefiles, or whether to use
a single top-level makefile that may require minor editing for some (or all) platforms. Ghostscript currently uses the
following top-level makefiles for building interpreter configurations:

¢ POSIX systems (inluding Linux and Unix):

— GNU Autoconf source script for automatic build configuration.

7.5. Memory management 137

Ghostscript Documentation, Release 10.03.1

Makefile.in, source for the top-level makefile used in the Autoconf build.

base/unix-gcc.mak, for Unix with gcc.

base/unixansi.mak, for Unix with an ANSI C compiler other than gcc.

« PC:

ghostscript.veproj, Visual Studio project file used to build Ghostscript.

psi/msvc32.mak, for MS Windows with Microsoft Visual C (MSVC).
psi/os2.mak, for MS-DOS or OS/2 GCC/EMX environment.

* Macintosh:
— base/macosx.mak, commandline makefile for MacOS X.
— base/macos-mcp.mak, dummy makefile to generate an xml project file for Metrowerks Codewarrior.
* Other:
— base/all-arch.mak, for building on many Unix systems in a networked test environment.
— base/openvms.mak, for OpenVMS with Digital’s CC compiler and the MMS build program.
— base/openvms.mmk, for OpenVMS with Digital’s CC compiler and the MMK build program.
The following top-level makefiles build the library test program:
e base/ugcclib.mak, on Unix with gcc.
¢ base/msvclib.mak, on MS Windows with MSVC.

The MSVC makefiles may require editing to select between different versions of MSVC, since different versions may
have slightly incompatible command line switches or customary installation path names. The Unix makefiles often
require editing to deal with differing library path names and/or library names. For details, see the Unix section of the
documentation for building Ghostscript.

Library test program:
base/gslib.c.

Platform-independent makefiles:

Graphics library and support:
devices/contrib.mak, devices/devs.mak, base/gs.mak, base/lib.mak, base/version.mak.

PostScript interpreter and fonts:
psi/int.mak.

Third-party libraries:
base/expat.mak, base/ijs.mak, base/jbig2.mak, base/ldf_jb2.mak, base/lwf jp2.mak, base/jpeg.mak,
base/png.mak, base/zlib.mak.

Shared platform-dependent makefiles:

Unix:
base/unix-aux.mak, base/unix-dll.mak, base/unix-end.mak, base/unixhead.mak, base/unixinst.mak,
base/unixlink.mak.

Microsoft Windows and MS-DOS:
base/msvcemd.mak, base/msvctail.mak, base/pcwin.mak, psi/winint.mak, base/winlib.mak,
base/winplat.mak.

138 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

Coding standards

Coding for portability requires avoiding both explicit dependencies, such as platform-dependent #ifdefs, and implicit
dependencies, such as dependencies on byte order or the size of the integral types.

Explicit dependencies

The platform-independent .c files never, ever, use #ifdef or #if to select code for specific platforms. Instead, we
always try to characterize some abstract property that is being tested. For example, rather than checking for macros
that are defined on those specific platforms that have 64-bit long values, we define a macro ARCH_SIZEOF_LONG
that can then be tested. Such macros are always defined in a .h file, either automatically in arch.h, or explicitly in a
xxx_.h file, as described in earlier sections.

Files:
base/std.h, base/stdpn.h, base/stdpre.h.

Implicit dependencies

The most common source of byte ordering dependencies is casting between types (T1 *) and (T2 *) where T1 and T2
are numeric types that aren’t merely signed/unsigned variants of each other. To avoid this, the only casts allowed in the
code are between numeric types, from a pointer type to a long integral type, and between pointer types.

Ghostscript’s code assumes the following about the sizes of various types:

char
8 bits

short
16 bits
int
32 or 64 bits

long
32 or 64 bits

float
32 bits (may work with 64 bits)

double
64 bits (may work with 128 bits)

The code does not assume that the char type is signed (or unsigned); except for places where the value is always a
literal string, or for interfacing to library procedures, the code uses byte (a Ghostscript synonym for unsigned char)
almost everywhere.

Pointers are signed on some platforms and unsigned on others. In the few places in the memory manager where it’s
necessary to reliably order-compare (as opposed to equality-compare) pointers that aren’t known to point to the same
allocated block of memory, the code uses the PTR_relation macros rather than direct comparisons.

See the files listed above for other situations where a macro provides platform-independence or a workaround for bugs
in specific compilers or libraries (of which there are a distressing number).

7.5. Memory management 139

Ghostscript Documentation, Release 10.03.1

Platform-specific code

There are some features that are inherently platform-specific:
* Microsoft Windows requires a lot of special top-level code, and also has an installer and uninstaller.
* OS/2 requires a little special code.
* MacOS also requires special top-level code (now distributed with the standard Ghostscript package).
 All platforms supporting DLLs (currently all three of the above) share some special top-level code.

MS Windows files:
psi/dpmain.c, psi/dwdll.c, psi/dwdll.h, psi/dwimg.c, psi/dwimg.h, psi/dwmain.c, psi/dwmainc.c, psi/dwnodll.c,
psi/dwreg.c, psi/dwreg.h, psi/dwres.h, psi/dwtext.c, psi/dwtext.h, psi/dwtrace.c, psi/dwtrace.h, base/gp_msdll.c,
base/gp_mspol.c, base/gp_msprn.c, base/gsdllwin.h.

0S7/2 files:
base/gp_os2pr.c,

Unix files:
psi/dxmain.c, psi/dxmainc.c.

Macintosh files:
devices/gdevmac.c, devices/gdevmac.h, devices/gdevmacpictop.h, devices/gdevmacttf.h, base/gp_mac.c,
base/gp_mac.h, base/gp_macio.c, base/gp_macpoll.c, base/gsiomacres.c, base/macgenmcpxml.sh,
base/macsystypes.h, base/macos_carbon_pre.h, base/macos_carbon_d_pre.h, base/macos_classic_d_pre.h,
psi/dmmain.c, psi/dmmain.r.

VMS files:
base/vms_x_fix.h.

DLL files:
psi/gsdll.c, base/gsdll.h, devices/gdevdsp.c, devices/gdevdsp.h, devices/gdevdsp2.h, psi/iapi.c, psi/iapi.h,
psi/idisp.c, psi/idisp.h. The new DLL interface (new as of 7.0) is especially useful with the new display de-
vice, so it is included here. Both are due to Russell Lang.

7.6 Troubleshooting

The Ghostscript code has many tracing and debugging features that can be enabled at run time using the -Z command
line switch, if the executable was compiled with DEBUG defined. One particularly useful combination is -Z@\?, which
fills free memory blocks with a pattern and also turns on run-time memory consistency checking. For more information,
see doc/Use.html#Debugging; you can also search for occurrences of if_debug or gs_debug_c in the source code.
Note that many of these features are in the graphics library and do not require a PostScript interpreter.

The code also contains many run-time procedures whose only purpose is to be called from the debugger to print out var-
ious data structures, including all the procedures in psi/idebug.c (for the PostScript interpreter) and the debug_dump_
procedures in base/gsmisc.c.

Files:
doc/Use.html#Debugging, base/gdebug.h, base/gsmdebug.h, psi/idebug.h, psi/idebug.c.

140 Chapter 7. Information for Ghostscript Developers

Ghostscript Documentation, Release 10.03.1

7.7 Profiling

7.7.1 Profiling with Microsoft Developer Studio 6
The Microsoft profiling tool is included into Microsoft Developer Studio 6 Enterprise Edition only. Standard Edition
and Professional Edition do not include it.

Microsoft profiler tool requires the application to be linked with a special linker option. To provide it you need the
following change to gs/base/msvcecmd.mak:

##*% SYN-GS\HEAD\gs\src\msvccmd.mak Tue Jan 9 21:41:07 2007
--- gs\src\msvccmd.mak Mon May 7 11:29:35 2007

ek 159,163 Tk
Note that it must be followed by a space.
CT=/0d /Fd$(GLOBJDIR) $(NULL) $(CDCC) $(CPCH)
! LCT=/DEBUG /INCREMENTAL:YES

COMPILE_FULL_OPTIMIZED= # no optimization when debugging
COMPILE_WITH_FRAMES= # no optimization when debugging
--- 159,164 ----

Note that it must be followed by a space.
CT=/0d /Fd$(GLOBJDIR) $(NULL) $(CDCC) $(CPCH)
! # LCT=/DEBUG /INCREMENTAL:YES
! LCT=/DEBUG /PROFILE
COMPILE_FULL_OPTIMIZED= # no optimization when debugging
COMPILE_WITH_FRAMES= # no optimization when debugging
Tk dhhdhhdhhhh
fehk 167’175 Tl
1if $(DEBUGSYM)==0
CT=
I LCT=
CMT=/MT
lelse
CT=/Zi /Fd$(GLOBIDIR) $(NULL)
! LCT=/DEBUG
CMT=/MTd
lendif
--- 168,178 ----
1if $(DEBUGSYM)==0
CT=
! # LCT=
! LCT=/PROFILE
CMT=/MT
lelse
CT=/Zi /Fd$(GLOBIDIR) $(NULL)
! # LCT=/DEBUG
! LCT=/DEBUG /PROFILE
CMT=/MTd
lendif

Note: Any of debug and release build may be profiled.

7.7. Profiling 141

Ghostscript Documentation, Release 10.03.1

Microsoft Profiler tool can’t profile a dynamically loaded DLLs. When building Ghostscript with makefiles you need
to specify MAKEDLL=0 to nmake command line.

The Integrated Development Environment of Microsoft Developer Studio 6 cannot profile a makefile-based project.
Therefore the profiling tool to be started from command line.

The profiling from command line is a 4 step procedure. The following batch file provides a sample for it :

set DEVSTUDIO=G:\Program Files\Microsoft Visual Studio

set GS_HOME=..\..\gs-hdp

set GS_COMMAND_LINE=%GS_HOME%\bin\gswin32c.exe -I%GS_HOME%\lib;f:\afpl\fonts -r144 -
—»dBATCH -dNOPAUSE -d/DEBUG attachment.pdf

set START_FUNCTION=_main

set Path=%DEVSTUDIO%\Common\MSDev98\Bin;%DEVSTUDIO%\VC98\Bin
PREP.EXE /OM /SF %START_FUNCTION% /FT %GS_HOME%\bin\gswin32c.exe
If ERRORLEVEL 1 echo step 1 fails&exit

PROFILE /I %GS_HOME%\bin\gswin32c.pbi %GS_COMMAND_LINE%

If ERRORLEVEL 1 echo step 2 fails&exit

PREP /M %GS_HOME%\bin\gswin32c /OT xxx.pbt

If FRRORLEVEL 1 echo step 3 fails&exit

PLIST /ST xxx.pbt >profile.txt

If ERRORLEVEL 1 echo step 4 fails&exit

This batch file to be adopted to your configuration :

* Edit the path to developer studio in the line 1.

Edit the Ghostscript home directory in the line 2.

* Edit Ghostscript command line in line 3. Note that profiling without /NOPAUSE is a bad idea.

In the line 4 edit the function name to start the profiling from. The sample code specifies _main as the starting
function. Note it is the linker’s function name, which starts with underscore.

« Edit the output file name in the line 5.

142 Chapter 7. Information for Ghostscript Developers

https://discord.gg/TSpYGBW4eq

CHAPTER
EIGHT

API

8.1 What is the Ghostscript Interpreter API?

The Ghostscript interpreter can be built as a dynamic link library (DLL) on Microsoft Windows, as a shared object
on the Linux, Unix and MacOS X platforms. With some changes, it could be built as a static library. This document
describes the Application Programming Interface (API) for the Ghostscript interpreter library. This should not be
confused with the Ghostscript library which provides a graphics library but not the interpreter.

This supercedes the old DLL interface.

To provide the interface described in the usage documentation, a smaller independent executable loads the DLL/shared
object. This executable must provide all the interaction with the windowing system, including image windows and, if
necessary, a text window.

The Ghostscript interpreter library’s name and characteristics differ for each platform:

e The Win32 DLL gsd1132.d11 can be used by multiple programs simultaneously, but only once within each
process.

e The OS/2 DLL gsd112.d11 has MULTIPLE NONSHARED data segments and can be called by multiple pro-
grams simultaneously.

* The Linux shared object 1ibgs.so can be used by multiple programs simultaneously.

The source for the executable is in dw*.* (Windows), dp*.* (0S/2) and dx*.* (Linux/Unix). See these source files
for examples of how to use the DLL.

The source file dxmainc.c can also serve as an example of how to use the shared library component on MacOS X,
providing the same command-line tool it does on any linux, bsd or similar operating system.

At this stage, Ghostscript does not support multiple instances of the interpreter within a single process.

8.2 Exported functions

The functions exported by the DLL/shared object are described in the header file iapi.h and are summarised below.
Omitted from the summary are the calling convention (e.g. __stdcall), details of return values and error handling.

e int gsapi_revision (gsapi_revision_t *pr, int len); details
e int gsapi_new_instance (void **pinstance, void *caller_handle); details

e void gsapi_delete_instance (void *instance); details

143

Ghostscript Documentation, Release 10.03.1

int gsapi_set_stdio_with_handle (void *instance, int(*stdin_fn)(void *caller_handle,
char *buf, int len), int(*stdout_£fn) (void *caller_handle, const char *str,

int len), int(*stderr_fn) (void *caller_handle, const char *str, int len), void
*caller_handle) ; details

int gsapi_set_stdio (void *instance, int(*stdin_£fn) (void *caller_handle, char
*buf, int len), int(*stdout_fn) (void *caller_handle, const char *str, int len),
int (*stderr_fn) (void *caller_handle, const char *str, int len)); details

int gsapi_set_poll_with_handle (void *instance, int(*poll_fn)(void *caller_handle),
void *caller_handle); details

int gsapi_set_poll (void *instance, int(*poll_£fn) (void *caller_handle)); details
int gsapi_set_display_callback (void *instance, display_callback *callback); details

int gsapi_register_callout (void *instance, gs_callout callout, void
*callout_handle) ; details

void gsapi_deregister_callout (void *instance, gs_callout callout, void
“callout_handle); details

int gsapi_set_arg_encoding (void *instance, int encoding); details
int gsapi_get_default_device_list(void *instance, char **list, int *listlen); details

int gsapi_set_default_device_list(void *instance, const char *list, int listlen); de-
tails

int gsapi_run_string_begin (void *instance, int user_errors, int *pexit_code); details

int gsapi_run_string_continue (void *instance, const char *str, unsigned int length,
int user_errors, int *pexit_code); details

int gsapi_run_string_end (void *instance, int user_errors, int *pexit_code); details

int gsapi_run_string_with_length (void *instance, const char *str, unsigned int
length, int user_errors, int *pexit_code); details

int gsapi_run_string (void *instance, const char *str, int user_errors, int
“pexit_code); details

int gsapi_run_file (void *instance, const char *file_name, int user_errors, int
“pexit_code); details

int gsapi_init_with_args (void *instance, int argc, char “*argv); details
int gsapi_exit (void *instance); derails

int gsapi_set_param(void *instance, const char *param, const void *value,
gs_set_param_type type); details

int gsapi_get_param(void *instance, const char *param, void *value,
gs_set_param_type type); details

int gsapi_enumerate_params(void *instance, void **iter, const char **key,
gs_set_param_type *type); details

int gsapi_add_control_path(void *instance, int type, const char *path); details
int gsapi_remove_control_path(void *instance, int type, const char *path); details
void gsapi_purge_control_paths(void *instance, int type); details

void gsapi_activate_path_control(void *instance, int enable); details

144

Chapter 8. API

Ghostscript Documentation, Release 10.03.1

e int gsapi_is_path_control_active(void *instance); details
e int gsapi_add_fs (void *instance, gsapi_fs_t *fs, void *secret); details

e void gsapi_remove_fs (void *instance, gsapi_fs_t *fs, void *secret); details

8.2.1 gsapi_revision()

This function returns the revision numbers and strings of the Ghostscript interpreter library; you should call it before
any other interpreter library functions to make sure that the correct version of the Ghostscript interpreter has been
loaded.

typedef struct gsapi_revision_s {
const char *product;
const char *copyright;
long revision;
long revisiondate;
} gsapi_revision_t;
gsapi_revision_t r;

if (gsapi_revision(&r, sizeof(r)) == 0) {
if (r.revision < 650)
printf("Need at least Ghostscript 6.50");

}
else {

printf("revision structure size is incorrect");
}

8.2.2 gsapi_new_instance()

Create a new instance of Ghostscript. This instance is passed to most other gsapi functions. The caller_handle is the
default value that will be provided to callback functions. On some platforms (those that do not support threading),
only one instance of Ghostscript is supported at a time; any attempt to create more than one at a time would result in
gsapi_new_instance returning an error.

While the core Ghostscript devices are believed to be thread safe now, a handful of devices are known not to be (at
least the x/1 devices, uniprint, and the open printing devices). A new mechanism has been implemented that allows
devices to check for concurrent use and to refuse to start up. The devices shipped with Ghostscript known to use global
variables have had these calls added to them. Any authors of non-standard Ghostscript devices that use global variables
should consider adding the same calls to their own code.

The first parameter, is a pointer to an opaque pointer (void **). The opaque pointer (void *) must be initialised to
NULL before the call to gsapi_new_instance(). See Example 1.

8.2. Exported functions 145

Ghostscript Documentation, Release 10.03.1

8.2.3 gsapi_delete_instance()

Destroy an instance of Ghostscript. Before you call this, Ghostscript must have finished. If Ghostscript has been
initialised, you must call gsapi_exit before gsapi_delete_instance.

8.2.4 gsapi_set_stdio_with_handle()

Set the callback functions for stdio, together with the handle to use in the callback functions. The stdin callback function
should return the number of characters read, O for EOF, or -1 for error. The stdout and stderr callback functions should
return the number of characters written.

NOTE: These callbacks do not affect output device I/O when using “%stdout” as the output file. In that case, device
output will still be directed to the process “stdout” file descriptor, not to the stdio callback.

8.2.5 gsapi_set_stdio()

Set the callback functions for stdio. The handle used in the callbacks will be taken from the value passed to
gsapi_new_instance. Otherwise the behaviour of this function matches gsapi_set_stdio_with_handle.

8.2.6 gsapi_set_poll_with_handle()

Set the callback function for polling, together with the handle to pass to the callback function. This function will only
be called if the Ghostscript interpreter was compiled with CHECK_INTERRUPTS as described in gpcheck.h.

The polling function should return zero if all is well, and return negative if it wants Ghostscript to abort. This is often
used for checking for a user cancel. This can also be used for handling window events or cooperative multitasking.

The polling function is called very frequently during interpretation and rendering so it must be fast. If the function
is slow, then using a counter to return 0 immediately some number of times can be used to reduce the performance
impact.

8.2.7 gsapi_set_poll()

Set the callback function for polling. The handle passed to the callback function will be taken from the handle passed
to gsapi_new_instance. Otherwise the behaviour of this function matches gsapi_set_poll_with_handle.

8.2.8 gsapi_set_display_callback()

This call is deprecated; please use gsapi_register_callout to register a callout handler for the display device in prefer-
ence. Set the callback structure for the display device. The handle passed in the callback functions is taken from the
DisplayHandle parameter (or NULL if there is no such parameter). If the display device is used, this must be called
after gsapi_new_instance() and before gsapi_init_with_args(). See gdevdsp.h for more details.

146 Chapter 8. API

Ghostscript Documentation, Release 10.03.1

8.2.9 gsapi_register_callout()

This call registers a callout handler.

8.2.10 gsapi_deregister_callout()

This call deregisters a callout handler previously registered with gsapi_register_callout. All three arguments must
match exactly for the callout handler to be deregistered.

8.2.11 gsapi_set_arg_encoding()

Set the encoding used for the interpretation of all subsequent args supplied via the gsapi interface on this instance. By
default we expect args to be in encoding O (the ‘local’ encoding for this OS). On Windows this means “the currently
selected codepage”. On Linux this typically means utf8. This means that omitting to call this function will leave
Ghostscript running exactly as it always has. Please note that use of the ‘local’ encoding is now deprecated and should
be avoided in new code. This must be called after gsapi_new_instance() and before gsapi_init_with_args(Q).

8.2.12 gsapi_set_default_device_list()

Set the string containing the list of default device names, for example “display x11alpha x11 bbox”. Allows the calling
application to influence which device(s) gs will try, in order, in it’s selection of the default device. This must be called
after gsapi_new_instance() and before gsapi_init_with_args().

8.2.13 gsapi_get_default_device_list()

Returns a pointer to the current default device string. This must be called after gsapi_new_instance() and before
gsapi_init_with_args().

8.2.14 gsapi_init_with_args()

Initialise the interpreter. This calls gs_main_init_with_args() in imainarg.c . See below for return codes. The
arguments are the same as the “C” main function: argv[0] is ignored and the user supplied arguments are argv[1]
to argv[argc-1].

8.2.15 gsapi_run_*()

The gsapi_run_* functions are like gs_main_run_* except that the error_object is omitted. If these functions re-
turn <= -100, either quit or a fatal error has occured. You must call gsapi_exit() next. The only exception is
gsapi_run_string_continue () which will return gs_error_NeedInput if all is well. See below for return codes.

The address passed in pexit_code will be used to return the exit code for the interpreter in case of a quit or fatal
error. The user_errors argument is normally set to zero to indicate that errors should be handled through the normal
mechanisms within the interpreted code. If set to a negative value, the functions will return an error code directly
to the caller, bypassing the interpreted language. The interpreted language’s error handler is bypassed, regardless of
user_errors parameter, for the gs_error_interrupt generated when the polling callback returns a negative value.
A positive user_errors is treated the same as zero.

There is a 64 KB length limit on any buffer submitted to a gsapi_run_%* function for processing. If you
have more than 65535 bytes of input then you must split it into smaller pieces and submit each in a separate
gsapi_run_string_continue() call.

8.2. Exported functions 147

Ghostscript Documentation, Release 10.03.1

8.2.16 gsapi_exit()

Exit the interpreter. This must be called on shutdown if gsapi_init_with_args() has been called, and just before
gsapi_delete_instance().

8.2.17 gsapi_set_param()

Set a parameter. Broadly, this is equivalent to setting a parameter using -d, -s or -p on the command line. This call can-
not be made during a run_string operation. Parameters in this context are not the same as ‘arguments’ as processed
by gsapi_init_with_args, but often the same thing can be achieved. For example, with gsapi_init_with_args,
we can pass “-r200” to change the resolution. Broadly the same thing can be achieved by using gsapi_set_param to
set a parsed value of “<</HWResolution [200.0 200.0]>>".

Note, that internally, when we set a parameter, we perform an initgraphics operation. This means that using
set_param other than at the start of a page is likely to give unexpected results.

Further, note that attempting to set a parameter that the device does not recognise will be silently ignored, and that
parameter will not be found in subsequent gsapi_get_param calls.

The type argument dictates the kind of object that value points to:

typedef enum {

gs_spt_invalid = -1,

gs_spt_null =0, /* void * is NULL */

gs_spt_bool =1, /* void * is a pointer to an int (0 false,
* non-zero true). */

gs_spt_int =2, /% void * is a pointer to an int */

gs_spt_float = 3, /* void * is a float * */

gs_spt_name =4, /* void * is a char * */

gs_spt_string =5, /% void * is a char * */

gs_spt_long = 6, /* void * is a long * */

gs_spt_i64 7, /* void * is an int64_t * */

gs_spt_size_t = 8, /* void * is a size_t * */

gs_spt_parsed = 9, /* void * is a pointer to a char * to be parsed */

/% Setting a typed param causes it to be instantly fed to to the
* device. This can cause the device to reinitialise itself. Hence,
* setting a sequence of typed params can cause the device to reset
itself several times. Accordingly, if you OR the type with
* gs_spt_more_to_come, the param will held ready to be passed into
* the device, and will only actually be sent when the next typed
* param is set without this flag (or on device init). Not valid
* for get_typed_param. */
gs_spt_more_to_come = 1<<31
} gs_set_param_type;

%

Combining a type value by ORRing it with the gs_spt_more_to_come flag will cause the set_param operation to be
queued internally, but not actually be sent to the device. Thus a series of set_param operations can be queued, for
example as below:

int code = gsapi_set_param(instance,
"HWResolution",
"[300 300]",
gs_spt_parsed | gs_spt_more_to_come);

(continues on next page)

148 Chapter 8. API

Ghostscript Documentation, Release 10.03.1

(continued from previous page)

if (code >= 0) {

int i = 1;
code = gsapi_set_param(instance,
"FirstPage",
&i,
gs_spt_int | gs_spt_more_to_come);
}
if (code >= 0) {
int i = 3;
code = gsapi_set_param(instance,
"DownScaleFactor",
&i,
gs_spt_int);
}

This enables a series of set operations to be performed ‘atomically’. This can be useful for performance, in that any
reconfigurations to the device (such as page size changes or memory reallocations) will only happen when all the
parameters are sent, rather than potentially each time each one is sent.

8.2.18 gsapi_get_param()

Get a parameter. Retrieve the current value of a parameter.

If an error occurs, the return value is negative. Otherwise the return value is the number of bytes required for storage
of the value. Call once with value = NULL to get the number of bytes required, then call again with value pointing
to at least the required number of bytes where the value will be copied out. Note that the caller is required to know
the type of value in order to get it. For all types other than string, name, and parsed knowing the type means you
already know the size required.

This call retrieves parameters/values that have made it to the device. Thus, any values set using the
gs_spt_more_to_come without a following call without that flag will not be retrieved. Similarly, attempting to get
a parameter before gsapi_init_with_args has been called will not list any, even if gsapi_set_param has been
used.

Attempting to read a parameter that is not set will return gs_error_undefined (-21). Note that calling
gsapi_set_param followed by gsapi_get_param may not find the value, if the device did not recognise the key
as being one of its configuration keys.

8.2.19 gsapi_enumerate_params()

Enumerate the current parameters. Call repeatedly to list out the current parameters.

The first call should have *iter = NULL. Subsequent calls should pass the same pointer in so the iterator can be
updated. Negative return codes indicate error, 0 success, and 1 indicates that there are no more keys to read. On
success, key will be updated to point to a null terminated string with the key name that is guaranteed to be valid until
the next call to gsapi_enumerate_params. If type is non NULL then *type will be updated to have the type of the
parameter.

Note that only one enumeration can happen at a time. Starting a second enumeration will reset the first.

The enumeration only returns parameters/values that have made it to the device. Thus, any values set using the
gs_spt_more_to_come without a following call without that flag will not be retrieved. Similarly, attempting to enu-
merate parameters before gsapi_init_with_args has been called will not list any, even if gsapi_set_param has
been used.

8.2. Exported functions 149

Ghostscript Documentation, Release 10.03.1

8.2.20 gsapi_add_control_path()

Add a (case sensitive) path to one of the lists of permitted paths for file access. See dSAFER for more information about
permitted paths.

8.2.21 gsapi_remove_control_path()

Remove a (case sensitive) path from one of the lists of permitted paths for file access. See dSAFER for more information
about permitted paths.

8.2.22 gsapi_purge_control_paths()

Clear all the paths from one of the lists of permitted paths for file access. See dSAFER for more information about
permitted paths.

8.2.23 gsapi_activate_path_control()

Enable/Disable path control (i.e. whether paths are checked against permitted paths before access is granted). See
dSAFER for more information about permitted paths.

8.2.24 gsapi_is_path_control_active()

Query whether path control is activated or not. See dSAFER for more information about permitted paths.

8.2.25 gsapi_add_fs

Adds a new ‘Filing System’ to the interpreter. This enables callers to implement their own filing systems. The system
starts with just the conventional ‘file’ handlers installed, to allow access to the local filing system. Whenever files are
to be opened from the interpreter, the file paths are offered around each registered filing system in turn (from most
recently registered to oldest), until either an error is given, or the file is opened successfully.

Details of the gsapi_£fs_t are given below.
8.2.26 gsapi_remove_fs

Remove a previously registered ‘Filing System’ from the interpreter. Both the function pointers within the gs_fs_t
and the secret value must match exactly.

8.2.27 gsapi_fs_t

Each ‘filing system’ within gs is a structure of function pointers; each function pointer gives a handler from taking a
different named resource (a file, a pipe, a printer, a scratch file etc) and attempts to open it.

typedef struct

{
int (*open_file) (const gs_memory_t *mem,
void *secret,
const char *fname,

(continues on next page)

150 Chapter 8. API

Ghostscript Documentation, Release 10.03.1

(continued from previous page)

const char *mode,
gp_file **file);
int (*open_pipe) (const gs_memory_t “mem,
void *secret,
const char “fname,
char *rfname, /* 4096 bytes */
const char *mode,
gp_£file **file);
int (*open_scratch) (const gs_memory_t *mem,
void *secret,
const char *prefix,
char *rfname, /* 4096 bytes */
const char *mode,
int rm,
gp_file **file);
int (*open_printer) (const gs_memory_t *mem,
void *secret,
char *“fname, /* 4096 bytes */
int binary,
gp_£file **file);
int (*open_handle) (const gs_memory_t *mem,
void *secret,
char *“fname, /* 4096 bytes */
const char *mode,
gp_file “*file);

} gsapi_fs_t;

If the filename (always given in utf-8 format) is recognised as being one that the filing system handles (perhaps by the
prefix used), then it should open the file, fill in the gp_file pointer and return 0.

If the filename is not-recognised as being one that the filing system handles, then returning 0 will cause the filename
to be offered to other registered filing systems.

If an error is returned (perhaps gs_error_invalidfileaccess), then no other filing system will be allowed to try to
open the file. This provides a mechanism whereby a caller to gsapi can completely control access to all files accessed
via gp_fopen at runtime.

Note, that while most file access within Ghostscript will be redirected via these functions, stdio will not; see the existing
mechanisms within Ghostscript for intercepting/replacing this.

* The open_file function pointer will be called when something (most often a call to gp_fopen) attempts to
open a file.

* The open_pipe function pointer will be called when something (most often a call to gp_popen) attempts to
open a pipe. rfname points to a 4K buffer in which the actual name of the opened pipe should be returned.

e The open_scratch function pointer will be called when something (most often a call to
gp_open_scratch_file or gp_open_scratch_file_rm) attempts to open a temporary file. rfname
points to a 4K buffer in which the actual name of the opened pipe should be returned. If rm is true, then the file
should be set to delete itself when all handles to it are closed.

e The open_printer function pointer will be called when something (most often a call to gp_open_printer)
attempts to open a stream to a printer. If binary is true, then the stream should be opened as binary; most
streams will be binary by default - this has historical meaning on OS/2.

The open_hand]le function pointer will be called when something (most often a call via the postscript %chandle%
10 device) attempts to open a Windows handle. This entry point will never be called on non-Windows builds.

8.2. Exported functions 151

Ghostscript Documentation, Release 10.03.1

Any of these which are left as NULL will never be called; a filing system with all of the entries left as NULL is therefore
pointless.

The most complex part of the implementation of these functions is the creation of a gp_£file instance to return. There
are some helper functions for this, best explained by example.

Let us consider a hypothetical filing system that encrypts data as it is written, and decrypts it as it is read back. As
each file is read and written the encryption/decryption routines will need to use some state, carried between calls to the
filing system. We therefore might define a new type ‘derived’ from gp_file as follows:

typedef struct
{
gp_file base;
/% State private to the implementation of this file for encryption/decryption */
/* For example: */
int foo;
char *bar;
} gp_file_crypt;

An implementation of gs_£fs_t for our ‘crypt’ filing system might then look like this:

gsapi_fs_t gs_fs_crypt =

{
crypt_open_file,
NULL, /* open_pipe */
NULL, /* open_scratch */
NULL, /* open_printer */
NULL /* open_handle */
};

In the above definition, we define a single handler, to cope with the opening of our input/output files. If we wanted to
encrypt/decrypt other files too (perhaps the temporary files we produce) we’d need to define additional handlers (such
as open_scratch).

Our handler might look as follows:

int crypt_open_file(const gs_memory_t *mem,

void *secret,
const char “filename,
const char *mode,

gp_file **file)

gp_file_crypt crypt;

/% Ignore any filename not starting with "crypt://" */
if (strncmp(filename, "crypt://", 8) != 0)
return 0;

/% Allocate us an instance (and fill in the non-crypt-specific
* internals) */
crypt = (gp_file_crypt *)gp_file_alloc(mem, &crypt_ops, sizeof(*crypt), "gp_file_
—crypt");
if (crypt == NULL)
return gs_error_VMerror; /* Allocation failed */

(continues on next page)

152 Chapter 8. API

Ghostscript Documentation, Release 10.03.1

(continued from previous page)

/% Setup the crypt-specific state */
crypt->foo = 1;
crypt->bar = gs_alloc_bytes(mem->non_gc_memory, 256, "bar");
/% If allocations fail, we need to clean up before exiting */
if (crypt->bar) {
gp_file_dealloc(crypt);
return gs_error_VMerror;

}

/* Return the new instance */
*file = &crypt.base;
return 0;

The crucial part of this function is the definition of crypt_ops, an instance of the gp_file_ops_t type; a table of
function pointers that implement the actual operations required.

typedef struct {

int (*close) (gp_file *);

int (*getc) (gp_file *);

int (*putc) (gp_file *, int);

int (*read) (gp_file *, size_t size, unsigned int count, void *buf);

int (*write) (gp_file *, size_t size, unsigned int count, const void *buf);
int (*seek) (gp_file *, gs_offset_t offset, int whence);

gs_offset_t (*tell)(gp_file *);

int (*eof) (gp_file *);

gp_file *(*dup) (gp_file *, const char *mode);

int (*seekable) (gp_file *);

int (*pread) (gp_file *, size_t count, gs_offset_t offset, void *buf);

int (*pwrite) (gp_file *, size_t count, gs_offset_t offset, const void *buf);
int (*is_char_buffered) (gp_file *file);

void (*£fflush) (gp_file *file);

int (*ferror) (gp_file *file);

FILE “(*get_file) (gp_file *file);

void (*clearerr) (gp_file *file);

gp_file “(*reopen) (gp_file *f, const char *“fname, const char *“mode);

} gp_file_ops_t;

These functions generally follow the same patterns as the posix functions that match them, and so in many cases we
will describe these with references to such. Whenever these routines are called, they will be passed a gp_£file pointer.
This pointer will have originated from the crypt_open_£file call, and so can safely be cast back toa gp_file_crypt
pointer to allow private data to be accessed.

close(gp_file *)

* close the given file; free any storage in the crypt specific parts of gp_£file_crypt, but not the
gp_file_crypt structure itself.

int getc(gp_file *)

* Get a single character from the file, returning it as an int (or -1 for EOF). Behaves like
fgetc(FILE *).

int putc(gp_£file *, int)

8.2. Exported functions 153

Ghostscript Documentation, Release 10.03.1

* Put a single character to the file, returning the character on success, or EOF (and setting the error
indicator) on error. Behaves like fgetc(FILE *).

int read(gp_file *, size_t size, unsigned int count, void *buf)

* Reads count entries of size bytes the file into buf, returning the number of entries read. Behaves
like fread (FILE *, size, count, buf).

int write(gp_file *, size_t size, unsigned int count, const void *buf)

* Writes count entries of size bytes from buf into the file, returning the number of entries written.
Behaves like fwrite(FILE *, size, count, buf).

int seek(gp_file *, gs_offset_t offset, int whence)

¢ Seeks within the file. Behaves like fseek (FILE *, offset, whence).
gs_offset_t tell(gp_file *)

¢ Returns the current offset within the file. Behaves like £tell(FILE *).
int eof(gp_file #*)

e Returns 1 if we are at the end of the file, O otherwise. Behaves like feof (FILE *).
gp_file * dup(gp_file *, const char *mode)

* Optional function, only used if clist files are to be stored in this filing system. Behaves like
fdup (FILE *). Leave NULL if not implemented.

int seekable(gp_file *)

* Returns 1 if the file is seekable, 0 otherwise. Certain output devices will only work with seekable
files.

int pread(gp_file *, size_t count, gs_offset_t offset, void *buf)

* Optional function, only used if clist files are to be stored in this filing system. Behaves like
an atomic fseek(FILE *, offset, 0) and fread(FILE *, 1, count, buf). AKin to
pread.

int pwrite(gp_file *, size_t count, gs_offset_t offset, const void *buf)

* Optional function, only used if clist files are to be stored in this filing system. Behaves like
an atomic fseek(FILE *, offset, 0) and fwrite(FILE *, 1, count, buf). Akin to
pwrite.

int is_char_buffered(gp_file *file)

 Returns 1 if the file is character buffered, O otherwise. Used for handling reading from terminals.
Very unlikely to be used, so returning O all the time should be safe. Leave NULL to indicate
“always 0”.

void fflush(gp_file *file)

* Ensures that any buffered data is written to the file. Behaves like £f1ush(FILE *). Leave NULL
to indicate that no flushing is ever required.

int ferror(gp_file *file)
¢ Returns non-zero if there has been an error, or 0 otherwise. Behaves like ferror (FILE *).
FILE * get_file(gp_file *file)

* Optional: Gets the FILE * pointer that backs this file. Required for a few devices that insist on
working with FILE *’s direct. Generally safe to leave this set to NULL, and those devices will
fail gracefully.

154

Chapter 8. API

Ghostscript Documentation, Release 10.03.1

void clearerr(gp_file *file)
¢ Clear the error and EOF values for a file. Behaves like clearerror (FILE *).
gp_file * reopen(gp_file *f, const char *fname, const char *mode)

* Optional function, only used if the gp_file came from an open_scratch call; can be left
as NULL if the open_scratch pointer is set to NULL. Reopen a stream with a different mode.
Behaves like freopen(fname, mode, FILE *).

8.3 Callouts

Callouts are a mechanism for the core code (specifically devices) to communicate with the user of gsapi. This com-
munication can take the form of passing information out vis-a-vis what devices are doing, or requesting configuration
from the caller to affect exactly how the device itself works.

This is deliberately an extensible system, so exact details of callouts should be documented with the device in question.
In general however a callout handler will be of the form:

typedef int (*gs_callout)(void *callout_handle,
const char *device_name,
int id,
int size,
void *data);

The callout_handle value passed to the callout will be the value passed in at registration. The device_name should
be a null-terminated string giving the name of the device (though care should be taken to cope with the case where
device_name is NULL for potential future uses). The id value will have a (device-specific) meaning; see the documen-
tation for the device in question for more details. The same id value may be used to mean different things in different
devices. Finally, size and data have callout specific meanings, but typically, data will be a pointer to data block (which
may either be uninitialised or wholly/partially initialised on entry, and may be updated on exit), and size will be the
size (in bytes) of the block pointed to by data.

A return value of -1 (gs_error_unknownerror) means the callout was not recognised by the handler, and should
be passed to more handlers. Other negative values are interpreted as standard Ghostscript error values, and stop the
propagation of the callout. Non-negative return codes mean the callout was handled and should not be passed to any
more registered callout handlers.

8.4 Return codes

The gsapi_init_with_args, gsapi_run_* and gsapi_exit functions return an integer code.

8.3. Callouts 155

Ghostscript Documentation, Release 10.03.1

8.4.1 Return Codes from gsapi_*Q)

CODE STATUS

0 No errors

gs_error_Quit “quit” has been executed. This is not an error.
gsapi_exit () must be called next.

gs_error_interrupt The polling callback function returned a negative value,
requesting Ghostscript to abort.

gs_error_NeedInput More input is needed by
gsapi_run_string_continue(). This is not an
error.

gs_error_Info “gs -h” has been executed. This is not an error.
gsapi_exit () must be called next.

<0 Error

<= gs_error_Fatal Fatal error. gsapi_exit () must be called next.

The gsapi_run_*() functions do not flush stdio. If you want to see output from Ghostscript you must do this explicitly
as shown in the example below.

When executing a string with gsapi_run_string_*(), currentfile is the input from the string. Reading from
%stdin uses the stdin callback.

8.5 Example Usage

To try out the following examples in a development environment like Microsoft’s developer tools or Metrowerks Code-
warrior, create a new project, save the example source code as a .c file and add it, along with the Ghostscript dll or
shared library. You will also need to make sure the Ghostscript headers are available, either by adding their location
(the src directory in the Ghostscript source distribution) to the project’s search path, or by copying ierrors.h and
iapi.h into the same directory as the example source.

8.5.1 Example 1

/% Example of using GS DLL as a ps2pdf converter. */

#if defined(_WIN32) && !defined(_Windows)
define _Windows
#endif
#ifdef _Windows
/* add this source to a project with gsdl132.dl11l1, or compile it directly with:
cl -D_Windows -Isrc -Febin\ps2pdf.exe ps2pdf.c bin\gsdl132.1ib
*/
include <windows.h>
define GSDLLEXPORT __declspec(dllimport)
#endif

#include "ierrors.h"
#include "iapi.h"

void *minst = NULL;

(continues on next page)

156 Chapter 8. API

Ghostscript Documentation, Release 10.03.1

(continued from previous page)

int main(int argc, char *argv[])

{

int code, codel;

const char * gsargv[7];

int gsargc;

gsargv[0] = "";

gsargv[1l] = "-dNOPAUSE";

gsargv[2] = "-dBATCH";

gsargv[3] = "-dSAFER";

gsargv[4] = "-sDEVICE=pdfwrite";

gsargv[5] = "-sOutputFile=out.pdf";

gsargv[6] = "input.ps";

gsargc=7;

code = gsapi_new_instance(&minst, NULL);

if (code < 0)
return 1;

code = gsapi_set_arg_encoding(minst, GS_ARG_ENCODING_UTF8);

if (code == 0)
code = gsapi_init_with_args(minst, gsargc, gsargv);

codel = gsapi_exit(minst);

if ((code == 0) || (code == gs_error_Quit))
code = codel;

gsapi_delete_instance(minst);

if ((code == 0) || (code == gs_error_Quit))
return 0;

return 1;

}

8.5.2 Example 2

/* Similar to command line gs */

#1f defined(_WIN32) && !defined(_Windows)
define _Windows
#endif
#ifdef _Windows
/* Compile directly with:
cl -D_Windows -Isrc -Febin\gstest.exe gstest.c bin\gsdll32.1ib
*/
include <windows.h>
define GSDLLEXPORT __declspec(dllimport)
#endif
#include <stdio.h>
#include "ierrors.h"
#include "iapi.h"

/% stdio functions */

(continues on next page)

8.5. Example Usage 157

Ghostscript Documentation, Release 10.03.1

(continued from previous page)

static int GSDLLCALL
gsdll_stdin(void *instance, char *buf, int len)

{
int ch;
int count = 0;
while (count < len) {
ch = fgetc(stdin);
if (ch == EOF)
return 0;
*buf++ = ch;
count++;
if (ch == "\n")
break;
}
return count;
}

static int GSDLLCALL
gsdll_stdout(void *instance, const char *str, int len)

{
furite(str, 1, len, stdout);
fflush(stdout);
return len;

}

static int GSDLLCALL
gsdll_stderr(void *instance, const char *str, int len)

{
furite(str, 1, len, stderr);
fflush(stderr);
return len;

}

void *minst = NULL;
const char start_string[] = "systemdict /start get exec\n";

int main(int argc, char *argv[])

{
int code, codel;
int exit_code;

code = gsapi_new_instance(&minst, NULL);
if (code < 0)
return 1;
gsapi_set_stdio(minst, gsdll_stdin, gsdll_stdout, gsdll_stderr);
code = gsapi_set_arg_encoding(minst, GS_ARG_ENCODING_UTF8);
if (code == 0)
code = gsapi_init_with_args(minst, argc, argv);
if (code == 0)
code = gsapi_run_string(minst, start_string, 0, &exit_code);
codel = gsapi_exit(minst);
if ((code == 0) || (code == gs_error_Quit))

(continues on next page)

158 Chapter 8. API

Ghostscript Documentation, Release 10.03.1

(continued from previous page)

code = codel;
gsapi_delete_instance(minst);
if ((code == 0) || (code == gs_error_Quit))

return 0;
return 1;

8.5.3 Example 3

Replace main() in either of the above with the following code, showing how you can feed Ghostscript piecemeal:

const char *command = "1 2 add == flush\n";

int main(int argc, char *argv[])

{

int code, codel;
int exit_code;

code = gsapi_new_instance(&minst, NULL);
if (code < 0)
return 1;
code = gsapi_set_arg_encoding(minst, GS_ARG_ENCODING_UTF8);
if (code == 0)
code = gsapi_init_with_args(minst, argc, argv);

if (code == 0) {
gsapi_run_string_begin(minst, 0, &exit_code);

gsapi_run_string_continue(minst, command, strlen(command), ©

gsapi_run_string_continue(minst, "qu", 2, 0, &exit_code);
gsapi_run_string_continue(minst, "it", 2, 0, &exit_code);
gsapi_run_string_end(minst, 0, &exit_code);

}

codel = gsapi_exit(minst);
if ((code == 0) || (code == gs_error_Quit))
code = codel;

gsapi_delete_instance(minst);
if ((code == 0) || (code == gs_error_Quit))

return 0;
return 1;

&exit_code);

8.5. Example Usage

159

Ghostscript Documentation, Release 10.03.1

8.5.4 Example 4

When feeding Ghostscript piecemeal buffers, one can use the normal operators to configure things and invoke library
routines. For example, to parse a PDF file one could say:

code = gsapi_run_string(minst, "(example.pdf) .runlibfile", 0, &exit_code);

and Ghostscript would open and process the file named “example.pdf” as if it had been passed as an argument to
gsapi_init_with_args().

8.6 Multiple Threads

The Ghostscript library should have been compiled with a thread safe run time library. Synchronisation of threads is
entirely up to the caller. The exported gsapi_* () functions must be called from one thread only.

8.7 Standard Input and Output

When using the Ghostscript interpreter library interface, you have a choice of two standard input/output methods.
* If you do nothing, the “C” stdio will be used.

¢ If you use gsapi_set_stdio(), all stdio will be redirected to the callback functions you provide. This would
be used in a graphical user interface environment where stdio is not available, or where you wish to process
Ghostscript input or output.

The callback functions are described in iapi.h.

8.8 Display Device

The display device is available for use with the Ghostscript interpreter library. While originally designed for allowing
screen display of rendered output from Ghostscript, this is now powerful enough to provide a simple mechanism for
getting rendered output suitable for use in all manner of output scenarios, including printing.

Details of the API and options are given in the file gdevdsp.h. This device provides you with access to the raster
output of Ghostscript. It is the callers responsibility to copy this raster to a display window or printer.

In order for this device to operate, it needs access to a structure containing a set of callback functions, and a callback
handle (an opaque void * that can be used by caller to locate its own state). There are 2 ways that the device can get
this information, a legacy method, and a modern method.

8.8.1 Legacy method

The address of the callback structure, is provided using gsapi_set_display_callback(). This must be called after
gsapi_new_instance() and before gsapi_init_with_args().

With this call, the callback handle is passed as NULL by default, but can be overridden by using a parameter. We actively
dislike this way of working, as we consider passing addresses via the command line distasteful. The handle can be set
using:

-sDisplayHandle=1234

160 Chapter 8. API

Ghostscript Documentation, Release 10.03.1

Where “1234” is a string. The API was changed to use a string rather than an integer/long value when support for 64
bit systems arrived. A display “handle” is often a pointer, and since these command line options have to survive being
processed by Postscript machinery, and Postscript only permits 32 bit number values, a different representation was
required. Hence changing the value to a string, so that 64 bit values can be supported. The string formats allowed are:

1234 implicit base 10
10#1234 explicit base 10
16#04d2 explicit base 16

The “number string” is parsed by the display device to retrieve the number value, and is then assigned to the void pointer
parameter “pHandle” in the display device structure. Thus, for a trivial example, passing -sDisplayHandle=0 will
result in the first parameter passed to your display device callbacks being: (void *)@.

The previous API, using a number value:

-dDisplayHandle=1234

is still supported on 32 bit systems, but will cause a “typecheck” error on 64 bit systems, and is considered deprecated.
It should not be used in new code.

8.8.2 Modern method

The preferred method is to register a callout handler using gsapi_register_callout. When this handler is called for
the “display” device, with id = ® (= DISPLAY_CALLOUT_GET_CALLBACK), then data should point to an empty
gs_display_get_callback_t block, with size = sizeof(gs_display_get_callback_t).

typedef struct {
display_callback *callback;
void *caller_handle;

} gs_display_get_callback_t;

The handler should fill in the structure before returning, with a return code of 0.

Note, that the DisplayHandle value is only consulted for display device callbacks registered using the (legacy, now
deprecated) gsapi_set_display_callback API, not the preferred gsapi_register_callout based mechanism.

The device raster format can be configured using:

-dDisplayFormat=NNNN

Options include:
* native, gray, RGB, CMYK or separation color spaces.
* alpha byte (ignored).

* 1 to 16 bits/component.

bigendian (RGB) or littleendian (BGR) order.

top first or bottom first raster.

16 bits/pixel with 555 or 565 bitfields.

Chunky, Planar and Planar interleaved formats.

“Full screen” or “Rectangle Request” modes of operation.

8.8. Display Device 161

Ghostscript Documentation, Release 10.03.1

The operation of the device is best described with a walkthrough of some example code that uses it. For simplicity and
clarity, we have omitted the error handling code in this example; in production code, every place where we get a code
value returned we should check it for failure (a negative value) and clean up accordingly. First, we create an instance
of Ghostscript:

void *minst = NULL;
code = gsapi_new_instance(&minst, NULL);
code = gsapi_set_stdio(minst, gsdll_stdin, gsdll_stdout, gsdll_stderr);

Next, we have to give the display device the address of our callback structure. In old code, we would do so using
something like this:

code = gsapi_set_display_callback(minst, &display_callback);

We strongly recommend that you don’t do that, but instead use the more modern callout mechanism:

code = gsapi_register_callout(minst, my_callout_handler, state);

where state is any void * value you like, usually a pointer to help you reach any internal state you may need. Earlier
in your code you would have the definition of my_callout_handler that might look like this:

static int

my_callout_handler(void *instance,
void *callout_handle,
const char *device_name,

int id,
int size,
void *data)
{
/% On entry, callout_handle == the value of state passed in
* to gsapi_register_callout. */
/% We are only interested in callouts from the display device. */
if (device_name == NULL || strcmp(device_name, "display™))
return -1;
if (id == DISPLAY_CALLOUT_GET_CALLBACK)
{
/% Fill in the supplied block with the details of our callback
* handler, and the handle to use. In this instance, the handle
* is the pointer to our test structure. */
gs_display_get_callback_t *cb = (gs_display_get_callback_t *)data;
cb->callback = &display_callback;
cb->caller_handle = callout_handle;
return 0;
}
return -1;
}

As you can see, this callout handler only responds to callouts for the display device, and then only for one particular
function (id). It returns the same display_callback structure as the deprecated, legacy mechanism passed in using
gsapi_set_display_callback, with the added benefit that the caller_handle value can be passed in too. In this
example we pass in the same value as was used for callout_handle, but implementations are free to use any value
they want.

Returning to our example, we now set up a set of arguments to setup Ghostscript:

162 Chapter 8. API

Ghostscript Documentation, Release 10.03.1

int argc = 0;

/% Allow for up to 32 args of up to 64 chars each. */
char argv[32][64];

sprintf(argc[argc++], "gs");

sprintf(argv[argc++], "-sDEVICE=display");

The zeroth arg is a dummy argument to match the standard C mechanism for passing arguments to a program. Tradi-
tionally this is the name of the program being invoked. Next, we tell Ghostscript to use the display device.

sprintf(argv[argc++], "-sDEVICE=display™);

Next we tell the display device what output format to use. The format is flexible enough to support common Windows,
0S/2, Linux and Mac raster formats.

The format values are described in gdevdsp.h. To select the display device with a Windows 24-bit RGB raster:

sprintf(argv[argc++], "-dDisplayFormat=%d",
DISPLAY_COLORS_RGB | DISPLAY_ALPHA_NONE | DISPLAY_DEPTH_8 |
DISPLAY_LITTLEENDIAN | DISPLAY_BOTTOMFIRST);

If (and only if) you used the legacy mechanism described above, you will need another argument to pass in the
caller_handle value to be parroted back to the functions listed within display_callback:

sprintf(arg2, "-dDisplayHandle=%d", callout_handle);

Any other arguments that you want can be added to the end of the command line, typically including a file to run. Then
we pass that all to Ghostscript:

code = gsapi_init_with_args(minst, argc, argv);

At this point you should start to see your display callback functions being called. Exactly which callback functions are
provided, and how they respond will determine exactly how the display device operates. The primary choice will be
whether the device runs in “full page” or “rectangle request” mode. Details of these are given below.

Once we have finished processing the file, we can process other files using gsapi_run_file, or feed in data using
gsapi_run_string. Once you have finished, you can shut the interpreter down and exit, using:

code = gsapi_exit(minst);
gsapi_delete_instance(minst);

A full list of the display callback functions can be found in gdevdsp.h. There are several different versions of the
callback, corresponding to different “generations” of the device. In general you should use the latest one. The size field
of the structure should be initialised to the size of the structure in bytes.

8.8.3 display_open()

int (*display_open) (void *handle, void *device);

This function will be called when the display device is opened. The device may be opened and closed many times,
sometimes without any output being produced.

8.8. Display Device 163

Ghostscript Documentation, Release 10.03.1

8.8.4 display_preclose()

int (*display_preclose) (void *handle, void *device);

This function will be called when the display device is about to be closed. The device will not actually be closed until
this function returns.

8.8.5 display_close()

int (*display_close) (void *handle, void *device);

This function will be called once the display device has been closed. There will be no more events from the device
unless/until it is reopened.

8.8.6 display_presize()

int (*display_presize) (void *handle, void *device,
int width, int height, int raster, unsigned int format);

This function will be called when the display device is about to be resized. The device will only be resized if this
function returns 0.

8.8.7 display_size()

int (*display_size)(void *handle, void *device, int width, int height,
int raster, unsigned int format, unsigned char *pimage);

This function will be called when the display device is has been resized. The pointer to the raster image is pimage.

8.8.8 display_sync()

int (*display_sync) (void *handle, void *device);

This function may be called periodically during display to flush the page to the display.

8.8.9 display_page()

int (*display_page) (void *handle, void *device, int copies, int flush);

This function is called on a “showpage” operation (i.e. at the end of every page). Operation will continue as soon as
this function returns.

164 Chapter 8. API

Ghostscript Documentation, Release 10.03.1

8.8.10 display_update()

int (*display_update) (void *handle, void *device,
int x, int y, int w, int h);

This function may get called repeatedly during rendering to indicate that an area of the output has been updated. Certain
types of rendering will not see this function called back at all (in particular files using transparency).

8.8.11 display_memalloc()

int (*display_memalloc) (void *handle, void *device,
size_t long size);

Note: In older versions of this API, size is an unsigned long rather than a size_t.

If this function pointer is sent as NULL, then the display device will handle all the memory allocations internally, and
will always work in full page rendering mode.

Otherwise, this function will be called to allocate the storage for the page to be rendered into. If a non-NULL value
is returned, then the device will proceed to render the full page into it. If NULL is returned, then the device will
check a) whether we are using a V2 or greater display callback structure and b) whether that structure specifies a
rectangle_request function pointer.

If both of those conditions are true, then the device will continue in rectangle request mode. Otherwise it will fail with
an out of memory error.

8.8.12 display_memfree()

int (*display_memfree) (void *handle, void *device, void *ptr);

This function should be NULL if and only if display_memalloc is NULL. Any memory allocated using
display_memalloc will be freed via this function.

8.8.13 display_separation()

int (*display_separation)(void *handle, void *device,
int component, const char *component_name,
unsigned short c, unsigned short m,
unsigned short y, unsigned short k);

When using DISPLAY_COLORS_SEPARATION, this function will be called once for every separation component - first
“Cyan”, “Magenta”, “Yellow” and “Black”, then any spot colors used. The supplied ¢, m, y and k values give the
equivalent color for each spot. Each colorant value ranges from 0 (for none) to 65535 (full).

In separation color mode you are expected to count the number of calls you get to this function after each display_size
to know how many colors you are dealing with.

8.8. Display Device 165

Ghostscript Documentation, Release 10.03.1

8.8.14 display_adjust_band_height()

int (*display_adjust_band_height) (void *handle, void *device,
int bandheight);

When running in “rectangle request mode” the device first renders the page to a display list internally. It can then be
played back repeatedly so that different regions (rectangles) of the page can be extracted in sequence. A common use of
this is to support “banded” operation, where the page is divided into multiple non-overlapping bands of a fixed height.

The display device itself will pick an appropriate band height for it to use. If this function pointer is left as NULL then
this value will be used unchanged. Otherwise, the proposed value will be offered to this function. This function can
override the choice of bandheight, by returning the value that it would like to be used in preference.

In general, this figure should (as much as possible) only be adjusted downwards. For example, a device targeting an
inkjet printer with 200 nozzles in the print head might like to extract bands that are a multiple of 200 lines high. So the
function might return max (200, 200*(bandheight/200)). If the function returns 0O, then the existing value will
be used unchanged.

Any size rectangle can be chosen with any size bandheight, so ultimately the value chosen here will not matter much.
It may make some small difference in speed in some cases.

8.8.15 display_rectangle_request()

int (*display_rectangle_request) (void *handle, void *device,
void **memory, int *ox, int *oy,
int *raster, int *plane_raster,
int *x, int *y, int *w, int *h);

If the display device chooses to use rectangle request mode, this function will be called repeatedly to request a rectangle
to render. Ghostscript will render the rectangle, and call this function again. The implementer is expected to handle
the rectangle that has just been rendered, and to return the details of another rectangle to render. This will continue
until a rectangle with zero height or width is returned, whereupon Ghostscript will continue operation.

On entry, *raster and *plane_raster are set to the values expected by the format in use. All the other pointers
point to uninitialised values.

On exit, the values should be updated appropriately. The implementor is expected to store the values returned so that
the rendered output given can be correctly interpreted when control returns to this function.

memory should be updated to point to a block of memory to use for the rendered output. Pixel (*ox, *oy) is the first
pixel represented in that block.

*raster is the number of bytes difference between the address of component 0 of Pixel(*ox, *oy) and the address of
component 0 of Pixel(*ox, 1 + *oy).

*plane_raster is the number of bytes difference between the address of component O of Pixel(*ox, *oy) and the
address of component 1 of Pixel(*ox, *oy), if in planar mode, O otherwise. *x, *y, *w and *h give the rectangle
requested within that memory block.

Any set of rectangles can be rendered with this method, so this can be used to drive Ghostscript in various ways. Firstly,
it is simple to request a set of non-overlapping “bands” that cover the page, to drive a printer. Alternatively, rectangles
can be chosen to fill a given block of memory to implement a window panning around a larger page. Either the whole
image could be redrawn each time, or smaller rectangles around the edge of the panned area could be requested. The
choice is down to the caller.

Some examples of driving this code in full page mode are in dwmain.c (Windows), dpmain.c (OS/2) and dxmain.c
(X11/Linux), and dmmain.c (MacOS Classic or Carbon).

166 Chapter 8. API

Ghostscript Documentation, Release 10.03.1

Alternatively an example that drives this code in both full page and rectangle request mode can be found in api_test.
c.

On some platforms, the calling convention for the display device callbacks in gdevdsp.his not the same as the exported
gsapi_*() functions in iapi.h.

8.8. Display Device 167

https://discord.gg/TSpYGBW4eq

Ghostscript Documentation, Release 10.03.1

168 Chapter 8. API

CHAPTER
NINE

THE CORE LIBRARY

This document describes the Ghostscript library, a set of procedures to implement the graphics and filtering capabilities
that are primitive operations in the PostScript language and in Adobe Portable Document Format (PDF).

Ghostscript is actually two programs: a language interpreter, and a graphics library. The library provides, in the form
of C procedures, all the graphics functions of the language, that is, approximately those facilities listed in section 8.1 of
the PostScript Language Reference Manual, starting with the graphics state operators. In addition, the library provides
some lower-level graphics facilities that offer higher performance in exchange for less generality.

9.1 PostScript operator API

The highest level of the library, which is the one that most clients will use, directly implements the PostScript graphics
operators with procedures named gs_XXX, for instance gs_moveto and gs_£ill. Nearly all of these procedures take
graphics state objects as their first arguments, such as:

int gs_moveto(gs_state *, double, double);

Nearly every procedure returns an integer code which is >= 0 for a successful return or <0 for a failure. The failure
codes correspond directly to PostScript errors, and are defined in gserrors.h.

The library implements all the operators in the following sections of the PostScript Language Reference Manual, with
the indicated omissions and with the APIs defined in the indicated .h files. A header of the form A.h (B.h) indicates
that A.h is included in B.h, so A.h need not be included explicitly if B.h is included. Operators marked with * in
the “omissions” column are not implemented directly; the library provides lower-level procedures that can be used to
implement the operator.

There are slight differences in the operators that return multiple values, since C’s provisions for this are awkward. Also,
the control structure for the operators involving callback procedures (pathforall, image, colorimage, imagemask)
is partly inverted: the client calls a procedure to set up an enumerator object, and then calls another procedure for each
iteration. The . . . show operators, charpath, and stringwidth also use an inverted control structure.

169

Ghostscript Documentation, Release 10.03.1

Section (operators) Headers Omissions
Graphics state — device- | gscolor.h (gsstate.h)
independent gscolorl.h
gscolor2.h
gscspace.h
gshsb.h
gsline.h (gsstate.h)
gsstate.h
Graphics state — device- | gscolor.h (gsstate.h)
dependent gscolorl.h
gscolor2.h
gsht.h(gshtl.h, gsstate.h)
gshtl.h
gsline.h (gsstate.h)
Coordinate system and matrix gscoord.h *matrix, *identmatrix,
gsmatrix.h *concatmatrix, *invertmatrix
Path construction gspath.h *arct, *pathforall, wustrokepath,
gspath2.h uappend, upath, ucache
Painting gsimage.h *image, *colorimage, *imagemask,
gspaint.h ufill, ueofill, ustroke
gspath2.h
Form and pattern gscolor2.h execform
Device setup and output gsdevice.h *showpage, *set/currentpagedevice
Character and font gschar.h * (all the show operators), definefont,
gsfont.h undefinefont,
findfont, *scalefont, *makefont,
selectfont,
[Global]FontDirectory, Standard/
ISOLatinlEncoding, findencoding

The following procedures from the list above operate differently from their PostScript operator counterparts, as ex-
plained here:

gs_makepattern (gscolor2.h)
Takes an explicit current color, rather than using the current color in the graphics state. Takes an explicit allocator
for allocating the pattern implementation. See below for more details on gs_makepattern.

gs_setpattern (gscolor2.h), gs_setcolor (gscolor2.h), gs_currentcolor (gscolor2.h)
Use gs_client_color rather than a set of color parameter values. See below for more details on
gs_setpattern.

gs_currentdash_length/pattern/offset (gsline.h)
Splits up currentdash into three separate procedures.

gs_screen_init/currentpoint/next/install (gsht.h)
Provide an “enumeration style” interface to setscreen. (gs_setscreen is also implemented.)

gs_rotate/scale/translate (gscoord.h), gs_[i] [d]transform (gscoord.h)
These always operate on the graphics state CTM. The corresponding operations on free-standing matrices are in
gsmatrix.h and have different names.

gs_path_enum_alloc/init/next/cleanup (gspath.h)
Provide an “enumeration style”” implementation of pathforall.

gs_image_enum_alloc (gsimage.h), gs_image_init/next/cleanup (gsimage.h)
Provide an “enumeration style” interface to the equivalent of image, imagemask, and colorimage. In the

170 Chapter 9. The Core Library

Ghostscript Documentation, Release 10.03.1

gs_image_t, ColorSpace provides an explicit color space, rather than using the current color space in the
graphics state; ImageMask distinguishes imagemask from [color]image.

gs_get/putdeviceparams (gsdevice.h)
Take a gs_param_list for specifying or receiving the parameter values. See gsparam.h for more details.

gs_show_enum_alloc/release (gschar.h), gs_xxxshow_[n_]init (gschar.h), gs_show_next (gschar.h)
Provide an “enumeration style” interface to writing text. Note that control returns to the caller if the character
must be rasterized.

This level of the library also implements the following operators from other sections of the Manual:

Section (operators) Headers Operators

Interpreter parameter gsfont.h cachestatus, setcachelimit, *set/
currentcacheparams

Display PostScript gsstate.h set/currenthal ftonephase

In order to obtain the full PostScript Level 2 functionality listed above, FEATURE_DEVS must be set in the makefile
to include at least the following:

The *1ib.mak makefiles mentioned below do not always include all of these features.

Files named gs* . c implement the higher level of the graphics library. As might be expected, all procedures, variables,
and structures available at this level begin with “gs_". Structures that appear in these interfaces, but whose definitions
may be hidden from clients, also have names beginning with “gs_", that is, the prefix, not the implementation, reflects
at what level the abstraction is made available.

9.1.1 Patterns

Patterns are the most complicated PostScript language objects that the library API deals with. As in PostScript, defining
a pattern color and using the color are two separate operations.

gs_makepattern defines a pattern color. Its arguments are as follows:

gs_client_color * The resulting Pattern color is stored here.

This is different from PostScript, which has no color objects per se,

and hence returns a modified copy of the dictionary.

const The analogue of the original Pattern dictionary, described in detail just below.
gs_client_pattern

*

const gs_matrix * Corresponds to the matrix argument of the makepattern operator.
gs_state * The current graphics state.
gs_memory_t * The allocator to use for allocating the saved data for the Pattern color.

If this is NULL, gs_makepattern uses the same allocator that allocated
the graphics state. Library clients should probably always use NULL.

The gs_client_pattern structure defined in gscolor2.h corresponds to the Pattern dictionary that is the argu-
ment to the PostScript language makepattern operator. This structure has one extra member, void *client_data,
which is a place for clients to store a pointer to additional data for the PaintProc; this provides the same functionality
as putting additional keys in the Pattern dictionary at the PostScript language level. The PaintProc is an ordinary C
procedure that takes as parameters a gs_client_color *, which is the Pattern color that is being used for painting,
and a gs_state *, which is the same graphics state that would be presented to the PaintProc in PostScript. Currently
the gs_client_color * is always the current color in the graphics state, but the PaintProc should not rely on this.
The PaintProc can retrieve the gs_client_pattern * from the gs_client_color * with the gs_getpattern
procedure, also defined in gscolor2.h, and from there, it can retrieve the client_data pointer.

9.1. PostScript operator API 171

Ghostscript Documentation, Release 10.03.1

The normal way to set a Pattern color is to call gs_setpattern with the graphics state and with the
gs_client_color returned by gs_makepattern. After that, one can use gs_setcolor to set further Pattern
colors (colored, or uncolored with the same underlying color space); the rules are the same as those in PostScript. Note
that for gs_setpattern, the paint.values in the gs_client_color must be filled in for uncolored patterns; this
corresponds to the additional arguments for the PostScript setpattern operator in the uncolored case.

There is a special procedure gs_makebitmappattern for creating bitmap-based patterns. Its API is documented in
gscolor2.h; its implementation, in gspcolor. c, may be useful as an example of a pattern using a particularly simple
PaintProc.

9.1.2 Lower-level API

Files named gx*.c implement the lower level of the graphics library. The interfaces at the gx level are less stable,
and expose more of the implementation detail, than those at the gs level: in particular, the gx interfaces generally use
device coordinates in an internal fixed-point representation, as opposed to the gs interfaces that use floating point user
coordinates. Named entities at this level begin with gx_.

Files named gz*.c and gz*.h are internal to the Ghostscript implementation, and are not designed to be called by
clients.

9.2 Visual Trace instructions

Visual Trace instructions may be inserted in code to provide debug output in a graphical form. Graphics Library
doesn’t provide a rasterisation of the output, because it is platform dependent. Instead this, client application shpuld
set vd_trace® external variable to Graphics Library, passing a set of callbacks which provide the rasterization.

Visual Trace instructions are defined in vdtrace.h. Debug output must be opened with vd_get_dc instruction, which
obtains a drawing context for the debug output, and must be closed with vd_release_dc instruction. After opening
the output, scale, origin and shift to be set for mapping the debugee coordinate space to window coordinate space. Than
painting instructions to be used. Painting may be either immediate or indirect.

Indirect painting uses vd_beg_path before line output and vd_end_path after line output, to store a path into a
temporary storage. After this vd_stroke may be used for stroking the path, or vd_£fill may be used for filling the
region inside the path.

Immediate painting happens when path construction instructions are involved without vd_beg_path and
vd_end_path. In this case lines and curves are being drawed immediately, when a path construction instruction is
executed.

The following table explains the semantics of Visual Trace instructions.

9.2.1 Visual Trace instructions semantics

Instruction Function Parameters
vd_get_dc Obtain drawing context -T option flag value, for which the
subsequent output is enabled.
vd_release_dc Release drawing context
vd_enabled Is trace currently enabled ?
vd_get_size_unscaled_x Get the horizontal size of the output
window in pixels.
vd_get_size_unscaled_y Get the vertical size of the output

window in pixels.

continues on next page

172 Chapter 9. The Core Library

Ghostscript Documentation, Release 10.03.1

Table 1 - continued from previous page

Instruction

Function

Parameters

vd_get_size_caled_x

Get the horizontal size of the out-
put window in debuggee coordinate
units.

vd_get_size_caled_y

Get the vertical size of the out-
put window in debuggee coordinate
units.

vd_get_scale_x

Get the horizontal scale.

vd_get_scale_y

Get the vertical scale.

vd_get_origin_x

Get the horizontal position of the
draft origin in debuggee coordinate
space.

vd_get_origin_y

Get the vertical position of the draft
origin in debuggee coordinate space.

vd_set_scale(s)

Set isotripic scale.

Debugee space to window space
mapping scale, same for both dimen-
tions.

vd_set_scaleXY(sx,sy)

Set anisotripic scale.

Debugee space to window space
mapping scale, one for each dimen-
tion.

vd_set_origin(x,y)

Set the draft origin.

Origin of the draft in debugee space.

vd_set_shift(x,y)

Set the draft position.

Position of the draft origin in win-
dow space (in pixels).

vd_set_central_shift

Set the draft position to window cen-
ter.

vd_erase(c)

Fill entire window.

Color to fill.

vd_beg_path

Begin path construction.

vd_end_path

End path construction.

vd_moveto(x,y)

Path construction : Set the draft cur-
rent point.

Debugee coordinates.

vd_lineto(x,y)

Path construction : Line from cur-
rent point to specified point.

Debugee coordinates.

vd_lineto_mupti(p,n)

Path construction : Polyline from
current point to specified points.

Array of points and its size, debugee
coordinates.

vd_curveto(x0,y0,x1,y1,x2,
y2)

Path construction : Curve (3rd-order
Bezier) from current point to
specified point, with specified poles.

2 poles and the curve ending point,
debuggee coordinates.

vd_closepath

Path construction : Close the path (is
necessary for filling an area).

vd_bar(x0,y0,x1,yl,w,c)

Bar from point to point.

2 points (debugee coordinates),
width (in pixels) and color.

vd_square(x0,y0,w,c)

Square with specified center and
size.

The center (debugee coordinates),
size (in pixels) and color.

vd_rect(x0,y0,x1,yl,w,c)

Canonic rectangle with specified co-
ordinites.

Coordinates of boundaries (debugee
coordinates),
line width (in pixels) and color.

vd_quad(x0,y0,x1,yl,x2,y2,
x3,y3,w,C)

Quadrangle with specified coor-
dinites.

Coordinates of vertices (debugee co-
ordinates),
line width (in pixels) and color.

vd_curve(x0,y0,x1,y1,x2,y2,
x3,y3,c,w)

Curve with width.

4 curve poles (debugee coordinates),
color, and width (in pixels).

continues on next page

9.2. Visual Trace instructions

173

Ghostscript Documentation, Release 10.03.1

Table 1 - continued from previous page

Instruction

Function

Parameters

vd_circle(x,y,r,c)

Circle.

Center (debugee coordinates), ra-
dius (in pixels) and color.

vd_round(x,y,r,c)

Filled circle.

Center (debugee coordinates), ra-
dius (in pixels) and color.

vd_stroke Stroke a path constructed with:
vd_beg_path, vd_moveto,
vd_lineto,
vd_curveto, vd_closepath,
vd_end_path.
vd_fill Fill a path constructed with:
vd_beg_path, vd_moveto,
vd_lineto,
vd_curveto, vd_closepath,
vd_end_path.
vd_setcolor(c) Set a color. Color (an integer consisting of red,
green, blue bytes).
vd_setlinewidth(w) Set line width. Width (in pixels).

vd_text(x,y,s,c)

Paint a text.

Origin point (debugee coordinates),
a string, and a color.

vd_wait

Delay execution until a resuming
command is entered through user in-
terface.

Graphics Library doesn’t provide a rasterization of the debug output. Instead it calls callbacks, which are specified by a
client, and which may have a platform dependent implementation. The implementation must not use Graphics Library
to exclude recursive calls to it from Visual Trace instructions. The callbacks and auxiliary data are collected in the
structure vd_trace_interface, explained in the table below.

174

Chapter 9. The Core Library

Ghostscript Documentation, Release 10.03.1

9.2.2 vd_trace_interface structure

Field Purpose Parameters
host A pointer to the rasterizer control block -

to be provided by client application.

The type of the field is client dependent.
scale_x, Scale of debugee coordinate to window co-
scale_y ordinate mapping -

internal work data, don’t change.
orig_x, Draft origin in debugee coordinates -
orig_y internal work data, don’t change.
shift_x, Draft shift in window coordinates -
shift_y internal work data, don’t change.

get_size_x(1

[D)Get window width in pixels.

get_size_y(1

[)Get window height in pixels.

get_dc (I,
I1)

Obtain drawing context.

Pointer to interface block,

and pointer to copy of the pointer.
Implementation must set *I1 if it succeeds
to get a drawing context.

release_dc(]
I1)

[,Release drawing context.

Pointer to interface block,

and pointer to copy of the pointer.
Implementation must reset *I1 if it succeeds
to release the drawing context.

erase(I,c)

Erase entire window.

Background color.

beg_path(I)

Begin path construction.

end_path(I)

End path construction.

moveto(T, Set current point. A point in window coordinates.

X,y)

lineto(TI, Line from current point to specified point. A point in window coordinates.

X,¥)

curveto(I, | Curve from current point with specified 3 points in window coordinates.
x0,y0,x1, poles to specified point.

yl,x2,y2)

closepath(I) Close the path.

circle(I, Circle. Center and radius, window coordinates.
X,Y,r)

round(I,x, Filled circle. Center and radius, window coordinates.
y,r)

fill(D Fill the path.

stroke(I) Stroke the path.

setcolor (I, | Set color. An integer, consisting of red, green, blue bytes.
c)

setlinewidth (et line width. Line width in pixels.

W)

text(I,x, Draw a text. Coordinates in pixels, and a string.
y,S)

wait(I) Delay execution until resume command is

inputted from user.

9.2. Visual Trace instructions

175

Ghostscript Documentation, Release 10.03.1

9.3 A full example

The file gslib.c in the Ghostscript fileset is a complete example program that initializes the library and produces
output using it; files named *1ib.mak (such as ugcclib.mak and bclib.mak) are makefiles using gslib.c as the
main program. The following annotated excerpts from this file are intended to provide a roadmap for applications that
call the library.

/% Capture stdin/out/err before gs.h redefines them. */

#include <stdio.h>

static FILE *real_stdin, *real_stdout, *real_stderr;

static void

get_real (void)

{ real_stdin = stdin, real_stdout = stdout, real_stderr = stderr;

}

Any application using Ghostscript should include the fragment above at the very beginning of the main program.

#include "gx.h"

The gx.h header includes a wealth of declarations related to the Ghostscript memory manager, portability machinery,
debugging framework, and other substrate facilities. Any application file that calls any Ghostscript API functions
should probably include gx.h.

/* Configuration information imported from gconfig.c. */
extern gx_device *gx_device_list[];

/% Other imported procedures */

/% from gsinit.c */

extern void gs_lib_init(P1(FILE *));

extern void gs_lib_finit(P2(int, int));

/% from gsalloc.c */

extern gs_ref_memory_t *ialloc_alloc_state(P2(gs_memory_t *, uint));

The externs above are needed for initializing the library.

gs_ref_memory_t *imem;

#define mem ((gs_memory_t *)imem)
gs_state *pgs;

gx_device *dev = gx_device_list[0];

gp_initQ;

get_real(Q);

gs_stdin = real_stdin;
gs_stdout = real_stdout;
gs_stderr = real_stderr;
gs_lib_init(stdout);

imem = ialloc_alloc_state(&gs_memory_default, 20000);
imem->space = 0;

pgs = gs_state_alloc(mem);

The code above initializes the library and its memory manager. pgs now points to the graphics state that will be passed
to the drawing routines in the library.

176 Chapter 9. The Core Library

Ghostscript Documentation, Release 10.03.1

gs_setdevice_no_erase(pgs, dev); /* can't erase yet */
{ gs_point dpi;

gs_screen_halftone ht;

gs_dtransform(pgs, 72.0, 72.0, &dpi);

ht. frequency = min(fabs(dpi.x), fabs(dpi.y)) / 16.001;

ht.angle = 0;

ht.spot_function = odsf;

gs_setscreen(pgs, &ht);

The code above initializes the default device and sets a default halftone screen. (For brevity, we have omitted the

definition of odsf, the spot function.)

/% gsave and grestore (among other places) assume that */
/% there are at least 2 gstates on the graphics stack. */
/* Ensure that now. */

gs_gsave(pgs) ;

The call above completes initializing the graphics state. When the program is finished, it should execute:

gs_lib_finit(0, 0);

9.3. A full example

177

https://discord.gg/TSpYGBW4eq

Ghostscript Documentation, Release 10.03.1

178 Chapter 9. The Core Library

CHAPTER
TEN

LANGUAGE BINDINGS

The core of Ghostscript is written in C, but also supports language bindings for the following programming languages:
o C#
* Java
* Python

All of the above languages have equivalent methods as defined in the C AP/. Java and C# provide additional helper
methods to make the use of the API easier for certain applications. These languages also provide example viewers that
make use of these methods.

This developer documentation is organized by programming language type and includes API reference and sample
code.

Before using the language bindings first ensure that Ghostscript is built for your platform before proceeding. See:
* Building with Visual Studio
* Building with MacOS

* Building with Unix

10.1 The C API

Ghostscript has been in development for over thirty years and is written in C. The API has evolved over time and is
continually being developed. The language bindings into Ghostscript will attempt to mirror this evolution and match
the current C' API as much as possible.

10.2 Licensing

Before using Ghostscript, please make sure that you have a valid license to do so. There are two available licenses;
make sure you pick the one whose terms you can comply with.

179

Ghostscript Documentation, Release 10.03.1

10.2.1 Open Source license

If your software is open source, you may use Ghostscript under the terms of the GNU Affero General Public License.
This means that all of the source code for your complete app must be released under a compatible open source license!
It also means that you may not use any proprietary closed source libraries or components in your app.

Please read the full text of the AGPL license agreement from the FSF web site

If you cannot or do not want to comply with these restrictions, you must acquire a commercial license instead.

10.2.2 Commercial license

If your project does not meet the requirements of the AGPL, please